Skip to main content
Log in

Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films

  • Colloquium
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The structural dynamics of polymers and simple liquids confined at the nanometer scale has been intensively investigated in the last two decades in order to test the validity of theories on the glass transition predicting a characteristic length scale of a few nanometers. Although this goal has not yet been reached, the anomalous behavior displayed by some systems --e.g. thin films of polystyrene exhibit reductions of Tg exceeding 70K and a tremendous increase in the elastic modulus-- has attracted a broad community of researchers, and provided astonishing advancement of both theoretical and experimental soft matter physics. 1D confinement is achieved in thin films, which are commonly treated as systems at thermodynamic equilibrium where free surfaces and solid interfaces introduce monotonous mobility gradients, extending for several molecular sizes. Limiting the discussion to finite-size and interfacial effects implies that film thickness and surface interactions should be sufficient to univocally determine the deviation from bulk behavior. On the contrary, such an oversimplified picture, although intuitive, cannot explain phenomena like the enhancement of segmental mobility in proximity of an adsorbing interface, or the presence of long-lasting metastable states in the liquid state. Based on our recent work, we propose a new picture on the dynamics of soft matter confined in ultrathin films, focusing on non-equilibrium and on the impact of irreversibly chain adsorption on the structural relaxation. We describe the enhancement of dynamics in terms of the excess in interfacial free volume, originating from packing frustration in the adsorbed layer (Guiselin brush) at t * ≪ 1 , where t* is the ratio between the annealing time and the time scale of adsorption. Prolonged annealing at times exceeding the reptation time (usually t * ≫ 1 induces densification, and thus reduces the deviation from bulk behavior. In this Colloquium, after reviewing the experimental approaches permitting to investigate the structural relaxation of films with one, two or no free surfaces by means of dielectric spectroscopy, we propose several methods to determine gradients of mobility in thin films, and then discuss on the unexploited potential of analyses based on the time, temperature and thickness dependence of the orientational polarization via the dielectric strength.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005)

    ADS  Google Scholar 

  2. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    ADS  Google Scholar 

  3. V. Lubchenko, P.G. Wolynes, in Annual Review of Physical Chemistry Vol. 58 (Annual Reviews, Palo Alto, 2007) pp. 235

  4. H. Shintani, H. Tanaka, Nat. Phys. 2, 200 (2006)

    Google Scholar 

  5. H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Nat. Mater. 9, 324 (2010)

    ADS  Google Scholar 

  6. H. Tanaka, Eur. Phys. J. E 35, 113 (2012)

    Google Scholar 

  7. Differently from the RFOT theory, where the formation of the droplets is driven by configurational entropy alone, the TOP model predicts that the formation of MRCOs is induced by two simultaneous processes: the maximization of the density of the system and the maximization concentration of intermolecular bonds

  8. J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000)

    ADS  Google Scholar 

  9. X. Zheng, M.H. Rafailovich, J. Sokolov, Y. Strzhemechny, S.A. Schwarz, B.B. Sauer, M. Rubinstein, Phys. Rev. Lett. 79, 241 (1997)

    ADS  Google Scholar 

  10. C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)

    ADS  Google Scholar 

  11. C. Rotella, S. Napolitano, L. De Cremer, G. Koeckelberghs, M. Wübbenhorst, Macromolecules 43, 8686 (2010)

    ADS  Google Scholar 

  12. R.D. Priestley, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson, Science 309, 456 (2005)

    ADS  Google Scholar 

  13. E. Donth, The Glass Transition, Relaxation Dynamics in Liquids and Disordered Materials (Springer-Verlag, New York, 2001)

  14. G.B. DeMaggio, W.E. Frieze, D.W. Gidley, M. Zhu, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997)

    ADS  Google Scholar 

  15. K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000)

    ADS  Google Scholar 

  16. S. Napolitano, D. Prevosto, M. Lucchesi, P. Pingue, M. D'Acunto, P. Rolla, Langmuir 23, 2103 (2007)

    Google Scholar 

  17. Z. Fakhraai, J.A. Forrest, Science 319, 600 (2008)

    Google Scholar 

  18. S. Napolitano, C. Rotella, M. Wübbenhorst, Acs Macro Lett. 1, 1189 (2012)

    Google Scholar 

  19. S. Napolitano, A. Pilleri, P. Rolla, M. Wübbenhorst, Acs Nano 4, 841 (2010)

    Google Scholar 

  20. J.J. Hernandez, D.R. Rueda, M.C. Garcia-Gutierrez, A. Nogales, T.A. Ezquerra, M. Soccio, N. Lotti, A. Munari, Langmuir 26, 10731 (2010)

    Google Scholar 

  21. D.R. Rueda, J.J. Hernandez, M.C. Garcia-Gutierrez, T.A. Ezquerra, M. Soccio, N. Lotti, A. Munari, J. Perlich, R. Serna, Langmuir 26, 17540 (2010)

    Google Scholar 

  22. D.R. Rueda, A. Nogales, J.J. Hernandez, M.-C. Garcia-Gutierrez, T.A. Ezquerra, S.V. Roth, M.G. Zolotukhin, R. Serna, Langmuir 23, 12677 (2007)

    Google Scholar 

  23. S. Napolitano, M. Wübbenhorst, Nat. Commun. 2, 260 (2011)

    ADS  Google Scholar 

  24. A. Serghei, F. Kremer, Macrom. Chem. Phys. 209, 810 (2008)

    Google Scholar 

  25. H.Y. Lu, W. Chen, T.P. Russell, Macromolecules 42, 9111 (2009)

    ADS  Google Scholar 

  26. B. Frieberg, E. Glynos, G. Sakellariou, P.F. Green, Acs Macro Lett. 1, 636 (2012)

    Google Scholar 

  27. B. Frieberg, E. Glynos, P.F. Green, Phys. Rev. Lett. 108, (2012)

  28. E. Glynos, B. Frieberg, H. Oh, M. Liu, D.W. Gidley, P.F. Green, Phys. Rev. Lett. 106, (2011)

  29. Z.H. Yang, Y. Fujii, F.K. Lee, C.H. Lam, O.K.C. Tsui, Science 328, 1676 (2010)

    ADS  Google Scholar 

  30. D. Qi, Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 101, (2008)

  31. C.R. Daley, Z. Fakhraai, M.D. Ediger, J.A. Forrest, Soft Matter 8, 2206 (2012)

    ADS  Google Scholar 

  32. H.K. Nguyen, M. Labardi, S. Capaccioli, M. Lucchesi, P. Rolla, D. Prevosto, Macromolecules 45, 2138 (2012)

    ADS  Google Scholar 

  33. J.E.G. Lipson, S.T. Milner, Eur. Phys. J. B 72, 133 (2009)

    ADS  Google Scholar 

  34. V.M. Boucher, D. Cangialosi, H.J. Yin, A. Schonhals, A. Alegria, J. Colmenero, Soft Matter 8, 5119 (2012)

    ADS  Google Scholar 

  35. J.C. Maxwell, Philos. Trans. R. Soc. London 157, 49 (1867)

    Google Scholar 

  36. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)

    ADS  Google Scholar 

  37. J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)

    ADS  Google Scholar 

  38. L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4, 42 (2008)

    Google Scholar 

  39. K. Watanabe, T. Kawasaki, H. Tanaka, Nat. Mater. 10, 512 (2011)

    ADS  Google Scholar 

  40. K. Ngai, Relaxation and Diffusion in Complex Systems (Springer, Berlin, 2011)

  41. C. Bottcher, Theory of Dielectric Polarization (Elsevier Scientific Publishing Company, Amsterdam, 1973)

  42. J. Runt, F.J. Fitzgerald, Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications (American Chemical Society, 1997)

  43. F. Kremer, A. Schoenhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)

  44. A. Schonhals, E. Schlosser, Colloid Polym. Sci. 267, 125 (1989)

    Google Scholar 

  45. G. Tamman, G.Z. Hesse, Anorg. Alleg. Chem. 156, 245 (1926)

    Google Scholar 

  46. G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Google Scholar 

  47. H.Z. Vogel, Phys. Z. 22, 645 (1921)

    Google Scholar 

  48. S. Havriliak, S. Negami, Polymer 8, 161 (1967)

    Google Scholar 

  49. P. Bebin, R.E. Prud'homme, Chem. Mater. 15, 965 (2003)

    Google Scholar 

  50. G. Blum, F. Kremer, T. Jaworek, G. Wegner, Adv. Mater. 7, 1017 (1995)

    Google Scholar 

  51. A. Serghei, F. Kremer, Rev. Sci. Instrum. 77, 116108 (2006)

    ADS  Google Scholar 

  52. E.U. Mapesa, M. Erber, M. Tress, K.J. Eichhorn, A. Serghei, B. Voit, F. Kremer, Eur. Phys. J. ST 189, 173 (2010)

    Google Scholar 

  53. C. Rotella, S. Napolitano, M. Wübbenhorst, Macromolecules 42, 1415 (2009)

    ADS  Google Scholar 

  54. M.C. Scott, D.R. Stevens, J.R. Bochinski, L.I. Clarke, ACS Nano 2, 2392 (2008)

    Google Scholar 

  55. S. Capponi, S. Napolitano, N.R. Behrnd, G. Couderc, J. Hulliger, M. Wübbenhorst, J. Phys. Chem. C 114, 16696 (2010)

    Google Scholar 

  56. M. Wübbenhorst, S. Capponi, S. Napolitano, S. Rozanski, G. Couderc, N.R. Behrnd, J. Hulliger, Eur. Phys. J. ST 189, 181 (2010)

    Google Scholar 

  57. S. Capponi, S. Napolitano, M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)

    ADS  Google Scholar 

  58. M.W. den Otter, Sensors, Actuators A: Phys. 96, 140 (2002)

    Google Scholar 

  59. S. Peter, S. Napolitano, H. Meyer, M. Wübbenhorst, J. Baschnagel, Macromolecules 41, 7729 (2008)

    ADS  Google Scholar 

  60. P.S. Crider, M.R. Majewski, Z. Jingyun, H. Oukris, N.E. Israeloff, Appl. Phys. Lett. 91, 013102 (2007)

    ADS  Google Scholar 

  61. M. Labardi, D. Prevosto, K.H. Nguyen, S. Capaccioli, M. Lucchesi, P. Rolla, J. Vac. Sci. Technol. B 28, C4D11 (2010)

    Google Scholar 

  62. T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    ADS  Google Scholar 

  63. G. A. Schwartz, C. Riedel, R. Arinero, P. Tordjeman, A. Alegria, J. Colmenero, Ultramicroscopy 111, 1366 (2011)

    Google Scholar 

  64. H.K. Nguyen, M. Labardi, M. Lucchesi, P. Rolla, D. Prevosto, Macromolecules 46, 555 (2013)

    ADS  Google Scholar 

  65. C. Rotella, M. Wübbenhorst, S. Napolitano, Soft Matter 7, 5260 (2011)

    ADS  Google Scholar 

  66. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002)

    ADS  Google Scholar 

  67. P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004)

    Google Scholar 

  68. D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001)

    ADS  Google Scholar 

  69. C.J. Vanoss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927 (1988)

    Google Scholar 

  70. D. Labahn, R. Mix, A. Schoenhals, Phys. Rev. E 79, 011801 (2009)

    ADS  Google Scholar 

  71. H. Yin, S. Napolitano, A. Schoenhals, Macromolecules 45, 1652 (2012)

    ADS  Google Scholar 

  72. C. Rotella, S. Napolitano, S. Vandendriessche, V.K. Valev, T. Verbiest, M. Larkowska, S. Kucharski, M. Wübbenhorst, Langmuir 27, 13533 (2011)

    Google Scholar 

  73. B. Vanroy, M. Wübbenhorst, S. Napolitano, Acs Macro Lett. 2, 168 (2013)

    Google Scholar 

  74. O. Guiselin, Europhys. Lett. 17, 225 (1991)

    ADS  Google Scholar 

  75. C.J. Durning, B. O'Shaughnessy, U. Sawhney, D. Nguyen, J. Majewski, G.S. Smith, Macromolecules 32, 6772 (1999)

    ADS  Google Scholar 

  76. J.F. Douglas, H.M. Schneider, P. Frantz, R. Lipman, S. Granick, J. Phys.: Condens. Matter 9, 7699 (1997)

    ADS  Google Scholar 

  77. S. Granick, Eur. Phys. J. E 9, 421 (2002)

    Google Scholar 

  78. P. Linse, Soft Matter 8, 5140 (2012)

    ADS  Google Scholar 

  79. C. Ligoure, L. Leibler, J. Phys. (Paris) 51, 1313 (1990)

    Google Scholar 

  80. P. Gin, N. Jiang, C. Liang, T. Taniguchi, B. Akgun, S.K. Satija, M.K. Endoh, T. Koga, Phys. Rev. Lett. 109, (2012)

  81. S. Napolitano, M. Wübbenhorst, Macromolecules 39, 5967 (2006)

    ADS  Google Scholar 

  82. K.L. Ngai, J. Phys. Chem. B 110, 26211 (2006)

    Google Scholar 

  83. C. Bauer, R. Bohmer, S. Moreno-Flores, R. Richert, H. Sillescu, D. Neher, Phys. Rev. E 61, 1755 (2000)

    ADS  Google Scholar 

  84. S. Srivastava, J.K. Basu, Phys. Rev. Lett. 98, (2007)

  85. J. Xu, D.W. Li, J. Chen, L. Din, X.L. Wang, F.F. Tao, G. Xue, Macromolecules 44, 7445 (2011)

    ADS  Google Scholar 

  86. B.M.I. Flier, M. Baier, J. Huber, K. Muellen, S. Mecking, A. Zumbusch, D. Woell, Phys. Chem. Chem. Phys. 13, 1770 (2011)

    Google Scholar 

  87. B.M.I. Flier, M.C. Baier, J. Huber, K. Mullen, S. Mecking, A. Zumbusch, D. Woll, J. Am. Chem. Soc. 134, 480 (2012)

    Google Scholar 

  88. N.B. Tito, J.E.G. Lipson, S.T. Milner, Soft Matter 9, 3173 (2013)

    ADS  Google Scholar 

  89. P.G. de Gennes, Eur. Phys. J. E 2, 201 (2000)

    Google Scholar 

  90. D. Cangialosi, M. Wübbenhorst, J. Groenewold, E. Mendes, H. Schut, A. van Veen, S.J. Picken, Phys. Rev. B 70, (2004)

  91. V.M. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, I. Pastoriza-Santos, L.M. Liz-Marzan, Soft Matter 7, 3607 (2011)

    ADS  Google Scholar 

  92. D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, J. Chem. Phys. 135, (2011)

  93. V. M. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, Macromolecules 45, 5296 (2012)

    Google Scholar 

  94. D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, Polymer 53, 1362 (2012)

    Google Scholar 

  95. M.S. McCaig, D.R. Paul, J.W. Barlow, Polymer 41, 639 (2000)

    Google Scholar 

  96. A.W. Thornton, A.J. Hill, Indust. Engin. Chem. Res. 49, 12119 (2010)

    Google Scholar 

  97. S. Napolitano, C. Rotella, M. Wübbenhorst, Macromol. Rapid Commun. 32, 844 (2011)

    Google Scholar 

  98. P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007)

    ADS  Google Scholar 

  99. Z. Jiang, H. Kim, X. Jiao, H. Lee, Y.J. Lee, Y. Byun, S. Song, D. Eom, C. Li, M.H. Rafailovich, L.B. Lurio, S.K. Sinha, Phys. Rev. Lett. 98, (2007)

  100. G. Reiter, S. Napolitano, J. Polym. Sci. Part B-Polym. Phys. 48, 2544 (2010)

    ADS  Google Scholar 

  101. G. Reiter, P.G. de Gennes, Eur. Phys. J. E 6, 25 (2001)

    Google Scholar 

  102. G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, Nat. Mater. 4, 754 (2005)

    ADS  Google Scholar 

  103. D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303 (2009)

    ADS  Google Scholar 

  104. K.R. Thomas, A. Chenneviere, G. Reiter, U. Steiner, Phys. Rev. E 83, (2011)

  105. R.N. Li, A. Clough, Z. Yang, O.K.C. Tsui, Macromolecules 45, 1085 (2012)

    ADS  Google Scholar 

  106. H. Richardson, I. Lopez-Garcia, M. Sferrazza, J.L. Keddie, Phys. Rev. E 70, (2004)

  107. H. Richardson, M. Sferrazza, J.L. Keddie, Eur. Phys. J. E 12, S87 (2003)

    Google Scholar 

  108. T.N. Liang, Z.Q. Zhang, T. Li, X.Z. Yang, Polymer 45, 1365 (2004)

    Google Scholar 

  109. C. Teng, Y. Gao, X. Wang, W. Jiang, C. Zhang, R. Wang, D. Zhou, G. Xue, Macromolecules 45, 6648 (2012)

    ADS  Google Scholar 

  110. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymer at Interfaces (Chapman & Hall, London, 1998)

  111. M.M. Santore, Curr. Opin. Colloid Interface Sci. 10, 176 (2005)

    Google Scholar 

  112. R. Zajac, A. Chakrabarti, Phys. Rev. E 52, 6536 (1995)

    ADS  Google Scholar 

  113. H.M. Schneider, P. Frantz, S. Granick, Langmuir 12, 994 (1996)

    Google Scholar 

  114. T.Z. Fu, U. Stimming, C.J. Durning, Macromolecules 26, 3271 (1993)

    ADS  Google Scholar 

  115. J. Baschnagel, K. Binder, Macromolecules 28, 6808 (1995)

    ADS  Google Scholar 

  116. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B-Polym. Phys. 44, 2951 (2006)

    ADS  Google Scholar 

  117. S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 9197 (2007)

    Google Scholar 

  118. S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 5775 (2007)

    Google Scholar 

  119. Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, (2005)

  120. S. Napolitano, V. Lupascu, M. Wübbenhorst, Macromolecules 41, 1061 (2008)

    ADS  Google Scholar 

  121. R. Casalini, S. Capaccioli, M. Lucchesi, P.A. Rolla, M. Paluch, S. Corezzi, D. Fioretto, Phys. Rev. E 6404, (2001)

  122. S. Corezzi, D. Fioretto, P. Rolla, Nature 420, 653 (2002)

    ADS  Google Scholar 

  123. J. Martin, C. Mijangos, A. Sanz, T.A. Ezquerra, A. Nogales, Macromolecules 42, 5395 (2009)

    ADS  Google Scholar 

  124. A.A. Levchenko, P. Jain, O. Trofymluk, P. Yu, A. Navrotsky, S. Sen, J. Phys. Chem. B 114, 3070 (2010)

    Google Scholar 

  125. S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 5775 (2007)

    Google Scholar 

  126. K. Fukao, T. Terasawa, Y. Oda, K. Nakamura, D. Tahara, Phys. Rev. E 84, (2011)

  127. K.L. Ngai, Eur. Phys. J. E 8, 225 (2002)

    Google Scholar 

  128. C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)

    ADS  Google Scholar 

  129. F. Dinelli, A. Ricci, T. Sgrilli, P. Baschieri, P. Pingue, M. Puttaswamy, P. Kingshott, Macromolecules 44, 987 (2011)

    ADS  Google Scholar 

  130. F. Dinelli, T. Sgrilli, A. Ricci, P. Baschieri, P. Pingue, M. Puttaswamy, P. Kingshott, to be published in J. Polym. Sci. Part B-Polym. Phys., DOI:10.1002/polb.23310

  131. T. Koga, N. Jiang, P. Gin, M.K. Endoh, S. Narayanan, L.B. Lurio, S.K. Sinha, Phys. Rev. Lett. 107, (2011)

  132. A. Serghei, M. Tress, F. Kremer, J. Chem. Phys. 131, (2009)

  133. S. Napolitano, M. Wübbenhorst, Polymer 51, 5309 (2010)

    Google Scholar 

  134. C. Alvarez, I. Sics, A. Nogales, Z. Denchev, S.S. Funari, T.A. Ezquerra, Polymer 45, 3953 (2004)

    Google Scholar 

  135. S. Napolitano, M. Wübbenhorst, J. Non-Cryst. Solids 353, 4357 (2007)

    ADS  Google Scholar 

  136. S. Napolitano, M. Wübbenhorst, J. Phys.: Condens. Matter 19, 205121 (2007)

    ADS  Google Scholar 

  137. P. Lunkenheimer, A. Pimenov, B. Schiener, R. Bohmer, A. Loidl, Europhys. Lett. 33, 611 (1996)

    ADS  Google Scholar 

  138. U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non-Cryst. Solids 235, 173 (1998)

    ADS  Google Scholar 

  139. C.B. Roth, J.M. Torkelson, Macromolecules 40, 3328 (2007)

    ADS  Google Scholar 

  140. J.E. Pye, C.B. Roth, Phys. Rev. Lett. 107, (2011)

  141. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996)

    ADS  Google Scholar 

  142. S. Kim, C.B. Roth, J.M. Torkelson, J. Polym. Sci. Part B-Polym. Phys. 46, 2754 (2008)

    ADS  Google Scholar 

  143. S. Kawana, R.A.L. Jones, Phys. Rev. E 63, 021501 (2001)

    ADS  Google Scholar 

  144. S. Kim, J.M. Torkelson, Macromolecules 44, 4546 (2011)

    ADS  Google Scholar 

  145. K. Paeng, S.F. Swallen, M.D. Ediger, J. Am. Chem. Soc. 133, 8444 (2011)

    Google Scholar 

  146. J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu, E.A. Rossler, Macromolecules 41, 9335 (2008)

    ADS  Google Scholar 

  147. C. Zhang, Y. Guo, K. Shepard, R.D. Priestley, J. Phys. Chem. Lett. 4, 431 (2013)

    Google Scholar 

  148. O. van den Berg, W.G.F. Sengers, W.F. Jager, S.J. Picken, M. Wübbenhorst, Macromolecules 37, 2460 (2004)

    ADS  Google Scholar 

  149. R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, K. Fukao, Phys. Rev. E 75, (2007)

  150. W.G.F. Sengers, O. van den Berg, M. Wübbenhorst, A.D. Gotsis, Polymer 46, 6064 (2005)

    Google Scholar 

  151. K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 5, 6405 (2001)

    Google Scholar 

  152. K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 6405, (2001)

  153. D. Labahn, R. Mix, A. Schonhals, Phys. Rev. E 79, 9 (2009)

    Google Scholar 

  154. K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 64, 11 (2001)

    Google Scholar 

  155. A. Serghei, M. Tress, F. Kremer, Macromolecules 39, 9385 (2006)

    ADS  Google Scholar 

  156. A. Serghei, Y. Mikhailova, H. Huth, C. Schick, K.J. Eichhorn, B. Voit, F. Kremer, Eur. Phys. J. E 17, 199 (2005)

    Google Scholar 

  157. P.K. Brazhnik, K.F. Freed, H. Tang, J. Chem. Phys. 101, 9143 (1994)

    ADS  Google Scholar 

  158. C. Bauer, R. Richert, R. Bohmer, T. Christensen, J. Non-Cryst. Solids 262, 276 (2000)

    ADS  Google Scholar 

  159. C.L. Soles, J.F. Douglas, W.L. Wu, H.G. Peng, D.W. Gidley, Macromolecules 37, 2890 (2004)

    ADS  Google Scholar 

  160. C.J. Ellison, M.K. Mundra, J.M. Torkelson, Macromolecules 38, 1767 (2005)

    ADS  Google Scholar 

  161. C. Kim, A. Facchetti, T.J. Marks, Science 318, 76 (2007)

    ADS  Google Scholar 

  162. N. Hao, M. Bohning, H. Goering, A. Schonhals, Macromolecules 40, 2955 (2007)

    ADS  Google Scholar 

  163. C. Housmans, M. Sferrazza, S. Napolitano, in preparation

  164. J.E. Pye, C.B. Roth, Phys. Rev. Lett. 23, 107 (2011) DOI:10.1103/PhysRevLett.107.235701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, S., Capponi, S. & Vanroy, B. Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 36, 61 (2013). https://doi.org/10.1140/epje/i2013-13061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13061-8

Keywords

Navigation