Skip to main content
Log in

Hierarchical structure in microbial cellulose: What happens during the drying process

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present a time-resolved investigation of the natural drying process of microbial cellulose (MC) by means of simultaneous small-angle neutron scattering (SANS), intermediate-angle neutron scattering (IANS) and weighing techniques. SANS was used to elucidate the microscopic structure of the MC sample. The coherent scattering length density of the water penetrating amorphous domains varied with time during the drying process to give a tunable scattering contrast to the water-resistant cellulose crystallites, thus the contrast variation was automatically performed by simply drying. IANS and weighing techniques were used to follow the macroscopic structural changes of the sample, i.e., the composition variation and the loss of the water. Thus, both the structure and composition changes during the whole drying process were resolved. In particular, the quantitative crosscheck of composition variation by IANS and weighing provides a full description of the drying process. Our results show that: i) The natural drying process could be divided into three time regions: a 3-dimensional shrinkage in region I, a 1-dimensional shrinkage along the thickness of the sample in region II, and completion in region III; ii) the further crystallization and aggregation of the cellulose fibrils are observed in both the rapid drying and natural drying methods, and the rapid drying even induces obvious structural changes in the length scale of 7-125nm; iii) the amount of “bound water”, which is an extremely thin layer of water surrounding the surfaces of cellulose fibrils, was estimated to be ∼ 0.35 wt% by the weighing measurement and was verified by the quantitative analysis of SANS results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, J. Mater. Sci. 25, 2997 (1990).

    Article  ADS  Google Scholar 

  2. S.M. Keshk, Bioproces. Biotechniq. 4, 1000150 (2014).

    Google Scholar 

  3. M. Shoda, Y. Sugano, Biotechnol. Bioprocess Eng. 10, 1 (2005).

    Article  Google Scholar 

  4. S. Koizumi, Y. Zhao, Y. Tomita, T. Kondo, H. Iwase, D. Yamaguchi, T. Hashimoto, Eur. Phys. J. E 26, 137 (2008).

    Article  Google Scholar 

  5. S. Koizumi, Y. Tomita, T. Kondo, T. Hashimoto, Macromol. Symp. 279, 110 (2009).

    Article  Google Scholar 

  6. R.L. Legge, Biotechnol. Adv. 8, 303 (1990).

    Article  Google Scholar 

  7. P. Ross, R. Mayer, M. Benziman, Microbial. Rev. 55, 35 (1991).

    Google Scholar 

  8. K. Watanabe, M. Tabuchi, Y. Morinaga, F. Yashinaga, Cellulose 5, 187 (1998).

    Article  Google Scholar 

  9. J. Shah, R.M. Brown, Appl. Microbiol. Biotechnol. 66, 352 (2005).

    Article  Google Scholar 

  10. B.R. Evans, H.M. O’Neill, V.P. Malyvanh, I. Lee, J. Woodward, Biosens. Bioelectron. 18, 917 (2003).

    Article  Google Scholar 

  11. M. Iguchi, S. Yamanaka, A. Budhiono, J. Mater. Sci. 35, 261 (2000).

    Article  ADS  Google Scholar 

  12. D. Klemm, U. Udhardt, S. Marsch, D. Schumann, Polymer News 24, 377 (1999).

    Google Scholar 

  13. D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Prog. Polym. Sci. 26, 1561 (2001).

    Article  Google Scholar 

  14. O.M. Alvarez, M. Patel, J. Booker, L. Markowitz, Wounds-Compend. Clin. Res. Pract. 16, 224 (2004).

    Google Scholar 

  15. J.D. Fontana, A.M. Desouza, C.K. Fontana, I.L. Torriani, J.C. Moreschi, B.J. Gallotti, S.J. Desouza, G.P. Narcisco, J.A. Bichara, F.X. Farah, Appl. Biochem. Biotechnol. 24, 253 (1990).

    Article  Google Scholar 

  16. J.D. Fontana, C.G. Joerker, M. Baron, M. Maraschin, A.G. Ferreira, I. Torriani, A.M. Souza, M.B. Soares, M.A. Fontana, M.F. Guimaraes, Appl. Biochem. Biotechnol. 63, 327 (1997).

    Article  Google Scholar 

  17. R. Jonas, L.F. Farah, Polym. Degrad. Stabil. 59, 101 (1998).

    Article  Google Scholar 

  18. P.L. Park, J.Y. Je, H.G. Byun, S.H. Moon, S.K. Kim, J. Microbiol. Biotechnol. 14, 317 (2004).

    Google Scholar 

  19. A.M. Sokolnicki, R.J. Fisher, T.P. Harrah, D.L. Kaplan, J. Membr. Sci. 272, 15 (2006).

    Article  Google Scholar 

  20. US 4655758, Microbiol Polysaccharide articles and methods of production (1987).

  21. C. Clasen, B. Sultanova, T. Wilhelms, P. Heisig, W.M. Kulicke, Macromol. Symp. 244, 48 (2006).

    Article  Google Scholar 

  22. C. Zhang, L. Wang, J. Zhao, P. Zhu, Adv. Mater. Res. 239-242, 2667 (2011).

    Article  Google Scholar 

  23. P. Ramanen, P.A. Penttila, K. Svedstrom, S.L. Maumu, R. Serimaa, Cellulose 19, 901 (2012).

    Article  Google Scholar 

  24. M. Schramm, S. Hestrin, Biochem. J. 56, 163 (1954).

    Google Scholar 

  25. M. Schramm, S. Hestrin, J. Gen. Microbiol. 11, 123 (1954).

    Article  Google Scholar 

  26. S. Bielecki, A. Krystynowicz, M. Turkiewicz, A. Kalinowska, Bacterial Cellulose, Biopolymers Online (2005), DOI:10.1002/3527600035.bpol5003.

  27. C.Q. Sun, J. Pharm. Sci. 94, 2132 (2005).

    Article  Google Scholar 

  28. S. Koizumi, H. Iwase, J. Suzuki, T. Oku, R. Motokawa, H. Sasao, H. Tanaka, D. Yamaguchi, H. Shimizu, T. Hashimoto, J. Appl. Crystallogr. 40, s474 (2007).

    Article  Google Scholar 

  29. D. Yamaguchi, S. Koizumi, R. Morokawa, T. Kumada, K. Aizawa, T. Hashimoto, Physica B. 385-386, 1190 (2006).

    Article  ADS  Google Scholar 

  30. S. Koizumi, Y. Zhao, Y. Tomita, D. Yamaguchi, H. Iwase, R. Motokawa, T. Hashimoto, T. Kondo, Soft Matter, submitted.

  31. R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science (Oxford University Press, New York, 2000).

  32. J.S. Higgins, H.C. Benoit, Polymers and Neutron Scattering (Clarendon Press, Oxford, 1994).

  33. H.F. Jakob, D. Fengel, S.E. Tschegg, P. Fratzl, Macromolecules 28, 8782 (1995).

    Article  ADS  Google Scholar 

  34. M. Muller, C. Czihak, G. Vogl, P. Fratzl, H. Schober, C. Riekel, Macromolecules 31, 3953 (1998).

    Article  ADS  Google Scholar 

  35. C.H. Haigler, P.J. Weimer (Editors), Biosynthesis and Biodegradation of Cellulose (Marcel Dekker, New York, 1991).

  36. N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Carbohydr. Polym. 90, 735 (2012).

    Article  Google Scholar 

  37. J. Haase, R. Hosemann, B. Renwanz, Colloid Polym. Sci. 252, 712 (1974).

    Article  Google Scholar 

  38. H.P. Fink, D. Hofmann, H. Purz, J. Acta Polym. 41, 131 (1990).

    Article  Google Scholar 

  39. H.F. Jakob, P. Fratzl, S.E. Tschegg, J. Struct. Biol. 113, 13 (1994).

    Article  Google Scholar 

  40. T. Nomura, T. Yamada, Wood Res. 52, 1 (1972).

    Google Scholar 

  41. S. Andersson, R. Serimaa, T. Paakkari, P. Saranpää, E. Pesonen, J. Wood Sci. 49, 531 (2003).

    Google Scholar 

  42. G. Porod, Kolloid Z. 124, 83 (1951).

    Article  Google Scholar 

  43. A. Okiyama, H. Shirae, H. Kano, S. Yamanka, Food Hydrocolloids 6, 471 (1992).

    Article  Google Scholar 

  44. A. Okiyama, M. Motoki, S. Yamanaka, Food Hydrocolloids 6, 503 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Koizumi, S., Yamaguchi, D. et al. Hierarchical structure in microbial cellulose: What happens during the drying process. Eur. Phys. J. E 37, 129 (2014). https://doi.org/10.1140/epje/i2014-14129-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14129-7

Keywords

Navigation