Skip to main content
Log in

Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper proposes a three-dimensional chaotic autonomous system with only one stable equilibrium. This system belongs to a newly introduced category of chaotic systems with hidden attractors. The nonlinear dynamics of the proposed chaotic system is described through numerical simulations which include phase portraits, bifurcation diagrams and new cost function for parameter estimation of chaotic flows. The coexistence of a stable equilibrium point with a strange attractor is found in the proposed system for specific parameters values. The physical existence of the chaotic behavior found in the proposed system is verified by using the Orcard-PSpice software. A good qualitative agreement is shown between the simulations and the experimental results. Based on the Routh-Hurwitz conditions and for a specific choice of linear controllers, it is shown that the proposed chaotic system is controlled to its equilibrium point. Chaos synchronization of an identical proposed system is achieved by using the unidirectional linear and nonlinear error feedback coupling. Finally, the fractional-order form of the proposed system is studied by using the stability theory of fractional-order systems and numerical simulations. A necessary condition for the commensurate fractional order of this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Phys. Lett. A 377, 699 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  2. Z. Wei, Phys. Lett. A 376, 102 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. X. Wang, G. Chen, Commun. Nonlinear Sci. Numer. Simulat. 17, 1264 (2012).

    Article  ADS  Google Scholar 

  4. Z. Wei, Q. Yang, Nonlinear Dyn. 68, 543 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Molaie, S. Jafari, J.C. Sprott, R.H.G.S. Mohammad, Int. J. Bifurcation Chaos 23, 13501888 (2013).

    Article  Google Scholar 

  6. J.C. Sprott, Phys. Rev. E 50, R647 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Jafari, J.C. Sprott, Chaos Solitons Fractals 378, 79 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Li, J.C. Sprott, Phys. Lett. A 57, 178 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  9. X. Wang, G. Chen, Nonlinear Dyn. 71, 429 (2013).

    Article  Google Scholar 

  10. V. Sundarapandian, I. Pehlivan, Math. Comput. Model. 55, 1904 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  11. S.T. Kingni, L. Keuninckx, P. Woafo, G. Van der Sande, J. Danckaert, Nonlinear Dyn. 73, 1111 (2013).

    Article  MATH  Google Scholar 

  12. G.A. Leonov, N.V. Kuznetsov, O.A. Kuznetsova, S.M. Seledzhi, V.I. Vagaitsev, Trans. Control Syst. 6, 54 (2011).

    Google Scholar 

  13. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Physica D 241, 1482 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurcation Chaos 23, 1330002 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  15. G.A. Leonov, N.V. Kuznetsov, Adv. Intell. Syst. Comput. 210, 5 (2013).

    Article  Google Scholar 

  16. G.A. Leonov, M.A. Kiseleva, N.V. Kuznetsov, P. Neittaanmäki, J. Appl. Nonlinear Dyn. 2, 83 (2013).

    Google Scholar 

  17. N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev, Lect. Notes Electri. Eng. 174, 149 (2013).

    Article  Google Scholar 

  18. V.O. Bragin, V.I. Vagaitsev, N.V. Kuznetsov, G.A. Leonov, J. Comput. Syst. Sci. Int. 50, 511 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Ahmed, A.M.A. El-Sayed, A.A. Hala, El-Saka, Phys. Lett. A 358, 1 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. M.S. Tavazoei, M. Haeri, Physica D 237, 2628 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Z. Wang, Y. Sun, G. Qi, B.J.V. Wyk, Nonlinear Dyn. 62, 139 (2010).

    Article  MATH  Google Scholar 

  22. K. Diethelm, N.J. Ford, D. Freed, Nonlinear Dyn. 29, 3 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  23. W. Deng, J. Comput. Appl. Math. 206, 174 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. R. Caponetto, R. Dongola, L. Fortuna, I. Petráš, Fractional order system: modelling and control applications, in World Scientific Series on Nonlinear Science Series A, Vol. 72 (World Scientific, 2010).

  25. S. Mukhopadhyay, S. Banerjee, Expert Syst. Appl. 39, 917 (2012).

    Article  Google Scholar 

  26. R. Konnur, Phys. Lett. A 346, 275 (2005).

    Article  ADS  Google Scholar 

  27. J. Sun, J. Zhao, X. Wu, W. Fang, Y. Cai, W. Xu, Phys. Lett. A 374, 2816 (2010).

    Article  ADS  MATH  Google Scholar 

  28. Y. Tang, X. Guan, Chaos Solitons Fractals 40, 1391 (2009).

    Article  ADS  MATH  Google Scholar 

  29. L. Yuan, Q. Yang, Commun. Nonlinear Sci. Numer. Simulat. 17, 305 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. C. Li, J. Zhou, J. Xiao, H. Xiao, Chaos Solitons Fractals 45, 539 (2012).

    Article  ADS  Google Scholar 

  31. R.C. Hilborn, Chaos and nonlinear dynamics: An introduction for scientists and engineers, 2nd edition (Oxford University Press, New York, 2001).

  32. S. Jafari, S.M.R. Hashemi Golpayegani, A.H. Jafari, S. Gharibzadeh, J. Neuropsychiatry Clin. Neurosci. 25, E19 (2013).

    Article  Google Scholar 

  33. S. Jafari, S.M.R.H. Golpayegani, A.H. Jafari, S. Gharibzadeh, Int. J. Gen. Syst. 41, 329 (2012).

    Article  MATH  Google Scholar 

  34. S. Jafari, S.M.R. Hashemi Golpayegani, M.R. Darabad, Commun. Nonlinear Sci. Numer. Simulat. 18, 811 (2013).

    Article  ADS  MATH  Google Scholar 

  35. S. Jafari, S.M.R.H. Golpayegani, A. Daliri, Int. J. Comput. Math. 90, 903 (2013).

    Article  MATH  Google Scholar 

  36. H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, Cambridge, 1997).

  37. I. Grigorenko, E. Grigorenko, Phys. Rev. Lett. 91, 034101 (2003).

    Article  ADS  Google Scholar 

  38. J.G. Lu, Phys. Lett. A 354, 305 (2006).

    Article  ADS  Google Scholar 

  39. VD. Gejji, S. Bhalekar, Comput. Math. Appl. 59, 1117 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  40. S.-P. Wang, S.-K. Lao, H.-K. Chen, J.-H. Chen, S.-Y. Chen, Int. J. Bifurcation Chaos 23, 1350030 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  41. A.E. Matouk, Commun. Nonlinear Sci. Numerical Simulat. 16, 975 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. G.S.M. Ngueuteu, P. Woafo, Mech. Res. Commun. 46, 20 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Kingni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingni, S.T., Jafari, S., Simo, H. et al. Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129, 76 (2014). https://doi.org/10.1140/epjp/i2014-14076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14076-4

Keywords

Navigation