Skip to main content
Log in

Model-based analysis of micropolar nanofluid flow over a stretching surface

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This article deals with the study of micropolar nanofluids flow over a stretching sheet. This study uses the compatible models to deal with the effects of two different kinds of nanoparticles (copper (Cu) and silver (Ag)) within the base fluids (water and Kerosene oil). Developed governing boundary layer equations and the boundary conditions are transformed into the system of coupled nonlinear ordinary differential equations. Numerical results are constructed for velocity, temperature, skin friction coefficient and local Nusselt number by considering the thermo-physical properties of both base fluids and particles. Fluid flow behavior is analyzed through stream lines and a conclusion has been developed under the observation of fluid flow behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Krajnik, F. Pusavec, A. Rashid, Nanofluids properties applications and sustainability aspects in materials processing technologies, in Advances in Sustainable Manufacturing (Springer, 2011) pp. 107--113

  2. T.V. Duncan, J. Colloid Interface Sci. 363, 1 (2011)

    Article  Google Scholar 

  3. X. Qu, P.J.J. Alvarez, Q. Li, Water Res. 47, 3931 (2013)

    Article  Google Scholar 

  4. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows, edited by D.A. Siginer, H.P. Wang, Vol. 66 (ASME, 1995) pp. 99--105

  5. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Netsu Bussei 7, 227 (1993)

    Article  Google Scholar 

  6. B.C. Pak, I. Cho, Exp. Heat Transfer 11, 151 (1998)

    Article  ADS  Google Scholar 

  7. J. Buongiorno, J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  8. R. Davis, Int. J. Thermophys. 7, 609 (1986)

    Article  ADS  Google Scholar 

  9. S.M. Aminossadati, B. Ghasemi, Eur. J. Mech. B/Fluids 28, 630 (2009)

    Article  ADS  MATH  Google Scholar 

  10. L. Godson, B. Raja, D. Mohan Lal, S. Wongwises, Exp. Heat Transfer 23, 317 (2010)

    Article  ADS  Google Scholar 

  11. S. Nadeem, R. Mehmood, N.S. Akbar, Int. J. Therm. Sci. 78, 90 (2014)

    Article  Google Scholar 

  12. R. Ellahi, M. Raza, K. Vafai, Math. Comp. Modell. 55, 1876 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Nadeem, R.U. Haq, Z.H. Khan, J. Taiwan Inst. Chem. Eng. 45, 121 (2013)

    Article  Google Scholar 

  14. R. Ellahi, Appl. Math. Modell. 37, 1451 (2013)

    Article  MathSciNet  Google Scholar 

  15. M.A.A. Hamad, Int. Commun. Heat Mass Transfer 38, 487 (2011)

    Article  Google Scholar 

  16. M.A.A. Hammad, M. Ferdows, Appl. Math. Mech. 33, 923 (2012)

    Article  Google Scholar 

  17. W.A. Khan, Z.H. Khan, M. Rahi, Appl. Nanosci. 4, 633 (2014)

    Article  ADS  Google Scholar 

  18. S. Nadeem, R.U. Haq, Z.H. Khan, Alexandria Eng. J. 53, 219 (2014)

    Article  Google Scholar 

  19. A.S. Ahuja, J. Appl. Phys. 46, 3408 (1975)

    Article  ADS  Google Scholar 

  20. A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. A.C. Eringen, J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  22. G. Lukaszewicz, Micropolar fluids: Theory and applications (Brikhauser Basel, 1999)

  23. M. Zadravec, M. Hribersek, L. Skerget, Eng. Anal. Bound. Elem. 33, 485 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. G.C. Bourantas, V.C. Loukopoulos, Int. J. Heat Mass Transfer 68, 35 (2014)

    Article  Google Scholar 

  25. B.C. Sakiadis, Am. Inst. Chem. Eng. J. 7, 26 (1961)

    Article  Google Scholar 

  26. F.K. Tsou, E.M. Sparrow, R.J. Goldstein, Int. J. Heat Mass Transfer 10, 219 (1967)

    Article  Google Scholar 

  27. L.E. Erickson, L.T. Fan, V.G. Fox, Ind. Eng. Chem. Fundam. 5, 19 (1966)

    Article  Google Scholar 

  28. R. Nazar, N. Amin, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 13, 86 (2003)

    Article  MATH  Google Scholar 

  29. O.D. Makinde, P.O. Olanrewaju, J. Fluids Eng. 132, 044502 (2010)

    Article  Google Scholar 

  30. N.S. Akbar, S. Nadeem, R.U. Haq, Z.H. Khan, Chin. J. Aeronaut. 26, 1389 (2013)

    Article  Google Scholar 

  31. S. Nadeem, S.T. Hussain, C. Lee, Braz. J. Chem. Eng. 30, 619 (2013)

    Article  Google Scholar 

  32. S. Nadeem, R.U. Haq, N.S. Akbar, IEEE Trans. Nanotechnol. 13, 109 (2014)

    Article  ADS  Google Scholar 

  33. O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transfer 62, 526 (2013)

    Article  Google Scholar 

  34. M. Qasim, I. Khan, S. Shafie, Math. Probl. Eng. 2013, 251937 (2013)

    Article  Google Scholar 

  35. Z.H. Khan, A. Khan, M. Qasim, I.A. Shah, IEEE Trans. Nanotechnol. 13, 35 (2014)

    Article  Google Scholar 

  36. N.S. Akbar, S. Nadeem, C. Lee, Z.H. Khan, R.U. Haq, Results Phys. 3, 161 (2013)

    Article  ADS  Google Scholar 

  37. S. Nadeem, R.U. Haq, J. Comput. Theor. Nanosci. 11, 32 (2014)

    Article  Google Scholar 

  38. M. Qasim, S. Noreen, Eur. Phys. J. Plus 129, 7 (2014)

    Article  Google Scholar 

  39. J.C. Maxwell, Electricity and magnetism, 3rd edition (Clarendon, Oxford Press, 1904)

  40. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fund. 1, 187 (1962)

    Article  Google Scholar 

  41. S.K. Choi, S.O. Kim, T.H. Lee, D. Hahn, Numer. Heat Transfer A 65, 287 (2014)

    Article  ADS  Google Scholar 

  42. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  MATH  Google Scholar 

  43. R.Y. Jou, S.C. Tzeng, Int. Commun. Heat Mass Transfer 33, 727 (2006)

    Article  Google Scholar 

  44. B. Ghasemi, S.M. Aminossadati, Numer. Heat Transfer A 55, 807 (2009)

    Article  ADS  Google Scholar 

  45. S. Nadeem, S.T. Hussain, Appl. Nanosci. (2013) DOI:10.1007/s13204-013-0282-1

  46. E.B. Ogut, Int. J. Therm. Sci. 48, 2063 (2009)

    Article  Google Scholar 

  47. C.Y. Wang, J. Appl. Math. Mech. (ZAMM) 69, 418 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Ul Haq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S.T., Nadeem, S. & Ul Haq, R. Model-based analysis of micropolar nanofluid flow over a stretching surface. Eur. Phys. J. Plus 129, 161 (2014). https://doi.org/10.1140/epjp/i2014-14161-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14161-8

Keywords

Navigation