Skip to main content
Log in

Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A theoretical and numerical analysis of dust-ion-acoustic (DIA) shock waves has been carried out in an unmagnetized dusty multi-ion plasma containing nonextensive electrons, inertial negatively charged heavy ions, positively charged Maxwellian light ions, and negatively charged stationary dusts. The normal mode analysis is used to examine the linear properties of DIA waves (DIAWs). The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers type equation (which describes the shock waves properties). The basic features (viz. polarity, amplitude, width, etc.) of the DIA shock waves are investigated. It is found that the basic features of DIA shock waves are significantly modified depending on the intrinsic parameters (viz. electron nonextensivity, heavy ions kinematic viscosity, heavy-to-light ion number density ratio, electron-to-light ion temperature ratio, etc.) of the considered plasma system. Both polarities (positive and negative potential) are also found to exist in the plasma under consideration in this paper. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Mamun, P.K. Shukla, Geophys. Res. Lett. 29, 1870 (2002).

    Article  ADS  Google Scholar 

  2. P.K. Shukla, G.T. Birk, G.E. Morfill, Phys. Scr. 56, 299 (1997).

    Article  ADS  Google Scholar 

  3. D.A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  4. C.K. Geortz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  5. P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  6. W.M. Moslem, W.F. El-Taibany, E.K. El-Shewy, E.F. El-Shamy, Phys. Plasmas 12, 052318 (2005).

    Article  ADS  Google Scholar 

  7. A.A. Mamun, P.K. Shukla, Phys. Plasmas 9, 1468 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Yasmin, M. Asaduzzaman, A.A. Mamun, Astrophys. Space Sci. 343, 245 (2013).

    Article  ADS  MATH  Google Scholar 

  9. H. Alinejad, Astrophys. Space Sci. 327, 131 (2010).

    Article  ADS  MATH  Google Scholar 

  10. A. Barkan, N. D'Angelo, R.L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  11. A.A. Mamun, P.K. Shukla, B. Eliasson, Phys. Plasmas 16, 114503 (2009).

    Article  ADS  Google Scholar 

  12. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics Publishing, Bristol, 2002).

  13. Q.Z. Luo, N. D'Angelo, R.L. Merlino, Phys. Plasmas 6, 3455 (1999).

    Article  ADS  Google Scholar 

  14. M. Bascal, G.W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  15. Y. Nakamura, H. Bailung, P.K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  16. B. Eliasson, P.K. Shukla, Phys. Plasmas 12, 024502 (2005).

    Article  ADS  Google Scholar 

  17. P.K. Shukla, Phys. Plasmas 8, 1791 (2001).

    Article  ADS  Google Scholar 

  18. R.L. Merlino, A. Barkan, C. Thompson, N. D'Angelo, Phys. Plasmas 5, 1607 (1998).

    Article  ADS  Google Scholar 

  19. H. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976).

  20. R.A. Gottscho, C.E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986).

    Article  ADS  Google Scholar 

  21. R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, Y. Kawai, Phys. Plasmas 9, 4481 (2002).

    Article  ADS  Google Scholar 

  22. C.O. Hines, J. Atmos. Terrest. Phys. 11, 36 (1957).

    Article  ADS  Google Scholar 

  23. S.J. Buchsbaum, Phys. Fluids 3, 418 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Sultana, A.A. Mamun, Astrophys. Space Sci. 349, 229 (2014).

    Article  ADS  Google Scholar 

  25. V.L. Yakimenko, Tech. Phys. 7, 117 (1962).

    MathSciNet  Google Scholar 

  26. M.A. Gintsburg, Geomagn. Aeronomy 3, 610 (1963).

    ADS  Google Scholar 

  27. W.M. Moslem, R. Sabry, S.K. El-Labany, P.K. Shukla, Phys. Rev. E 84, 066402 (2011).

    Article  ADS  Google Scholar 

  28. E. Saberian, A. Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013).

    Article  ADS  Google Scholar 

  29. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. A.R. Plastino, A. Plastino, Phys. Lett. A 174, 384 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Gervino, A. Lavagno, D. Pigato, Cent. Eur. J. Phys. 10, 594 (2012).

    Article  Google Scholar 

  32. A. Lavagno, D. Pigato, Eur. Phys. J. A 47, 52 (2011).

    Article  ADS  Google Scholar 

  33. C. Feron, J. Hjorth, Phys. Rev. E 77, 022106 (2008).

    Article  ADS  Google Scholar 

  34. J.R. Asbridge, S.J. Bame, I.B. Strong, J. Geophys. Res. 73, 5777 (1968).

    Article  ADS  Google Scholar 

  35. S.M. Krimigis, J.F. Carbary, E.P. Keath, T.P. Armstrong, L.J. Lanzerotti, G. Gloeckler, J. Geophys. Res. 88, 8871 (1983).

    Article  ADS  Google Scholar 

  36. S.V. Vladimirov, K.J. Ostrikov, Phys. Rep. 393, 175 (2004).

    Article  ADS  Google Scholar 

  37. S. Yasmin, M. Asaduzzaman, A.A. Mamun, J. Plasma Phys. 79, 545 (2013).

    Article  ADS  Google Scholar 

  38. A.S. Bains, M. Tribeche, C.S. Ng, Astrophys. Space Sci. 343, 621 (2013).

    Article  ADS  Google Scholar 

  39. H.R. Pakzad, Phys. Plasmas 18, 082105 (2011a).

    Article  ADS  Google Scholar 

  40. H.R. Pakzad, Phys. Scr. 83, 015505 (2011b).

    Article  ADS  Google Scholar 

  41. M. Ferdousi, S. Yasmin, S. Ashraf, A.A. Mamun, Astrophys. Space. Sci. 352, 579 (2014).

    Article  ADS  Google Scholar 

  42. M. Ferdousi, S. Yasmin, S. Ashraf, A.A. Mamun, Chin. Phys. Lett. 32, 015201 (2015).

    Article  ADS  Google Scholar 

  43. M. Ferdousi, A.A. Mamun, Braz. J. Phys. 45, 89 (2014).

    Article  ADS  Google Scholar 

  44. A. Renyi, Acta Math. Hung. 6, 285 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  45. U.N. Ghosh, D.K. Ghosh, P. Chatterjee, Astrophys. Space Sci. 343, 265 (2013).

    Article  ADS  MATH  Google Scholar 

  46. A.A. Mamun, P.K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  47. H.K. Andersen, N.D'Angelo, P. Michelsen, P. Nielsen, Phys. Rev. Lett. 19, 149 (1967).

    Article  ADS  Google Scholar 

  48. M. Tribeche, L. Djebarni, Phys. Plasmas 17, 124502 (2010).

    Article  ADS  Google Scholar 

  49. M. Tribeche, P.K. Shukla, Phys. Plasmas 18, 103702 (2011).

    Article  ADS  Google Scholar 

  50. P. Eslami, M. Mottaghizadeh, H.R. Pakzad, Phys. Scr. 84, 015504 (2011).

    Article  ADS  Google Scholar 

  51. E.I. El-Awady, W.M. Moslem, Phys. Plasmas 18, 082306 (2011).

    Article  ADS  Google Scholar 

  52. I. Tasnim, M.M. Masud, A.A. Mamun, Astrophys. Space Sci. 343, 647 (2013).

    Article  ADS  Google Scholar 

  53. A.A. Mamun, M.S. Zobaer, Phys. Plasmas 21, 022101 (2014).

    Article  ADS  Google Scholar 

  54. M.A. Hossen, M.R. Hossen, A.A. Mamun, Braz. J. Phys. 44, 703 (2014).

    Article  ADS  Google Scholar 

  55. F. Ferro, A. Lavagno, P. Quarati, Eur. Phys. J. A 21, 529 (2004).

    Article  ADS  Google Scholar 

  56. A. Vergou, J. Phys. Conf. Ser. 171, 012035 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ema, S.A., Ferdousi, M., Sultana, S. et al. Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas. Eur. Phys. J. Plus 130, 46 (2015). https://doi.org/10.1140/epjp/i2015-15046-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15046-0

Navigation