Skip to main content
Log in

A novel approach to entanglement dynamics of two two-level atoms interacting with dissipative cavities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we first introduce a system consisting of two dissipative cavities in which there exists a two-level atom in each cavity. The correlation between these two separate cavities is governed via the field-field interaction term. To describe the dissipation in the cavities we use the approach of the Gardiner-Collett model. By applying two successive suitable canonical transformations, and with the help of the Fano's technique, we simplify the obtained Hamiltonian. After that, the exact analytical solution of the wave function of the considered system is obtained by using the Laplace transform technique. We investigate the dynamics of entanglement for both atom-field weak and strong couplings corresponding to the bad and good cavity limits showing that the field-field coupling constant and the detuning parameter have a significant influence on the entanglement between the two atoms. Finally, we investigate the non-classical properties of the cavity fields by evaluating sub-Poissonian statistics and two-mode squeezing criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  2. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  3. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A. 54, 3824 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

  5. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  6. S.L. Braunstein, A. Mann, Phys. Rev. A. 51, R1727 (1995).

    Article  ADS  Google Scholar 

  7. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Phys. Rev. Lett. 76, 4656 (1996).

    Article  ADS  Google Scholar 

  8. X.Y. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, K. Peng, Phys. Rev. Lett. 88, 047904 (2002).

    Article  ADS  Google Scholar 

  9. C.Y. Hu, J.G. Rarity, Phys. Rev. B 83, 115303 (2011).

    Article  ADS  Google Scholar 

  10. C.Y. Hu, J.G. Rarity, Phys. Rev. B 83, 199903 (2011).

    Article  ADS  Google Scholar 

  11. M. Abdi, S. Pirandola, P. Tombesi, D. Vitali, Phys. Rev. Lett. 109, 143601 (2012).

    Article  ADS  Google Scholar 

  12. Th. Richter, W. Vogel, Phys. Rev. A 76, 053835 (2007).

    Article  ADS  Google Scholar 

  13. M. Murao, D. Jonathan, M.B. Plenio, V. Vedral, Phys. Rev. A 59, 156 (1999).

    Article  ADS  Google Scholar 

  14. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Bouwmeester et al., Nature 390, 575 (1997).

    Article  ADS  Google Scholar 

  16. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000).

    Article  ADS  Google Scholar 

  17. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).

    Article  ADS  Google Scholar 

  18. D.S. Naik, C.G. Peterson, A.G. White, A.J. Berglund, P.G. Kwiat, Phys. Rev. Lett. 84, 4733 (2000).

    Article  ADS  Google Scholar 

  19. Q.A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998).

    Article  ADS  Google Scholar 

  20. B. Julsgaard, A. Kozhekin, E.S. Polzik, Nature 413, 400 (2001).

    Article  ADS  Google Scholar 

  21. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981).

    Article  ADS  Google Scholar 

  22. A. Izmalkov et al., Phys. Rev. Lett. 93, 037003 (2004).

    Article  ADS  Google Scholar 

  23. M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 88, 197901 (2002).

    Article  ADS  Google Scholar 

  24. S. Clark, A. Peng, M.Gu.S. Parkins, Phys. Rev. Lett. 91, 177901 (2003).

    Article  ADS  Google Scholar 

  25. H. Bateman, Phys. Rev. 38, 815 (1931).

    Article  MathSciNet  ADS  Google Scholar 

  26. C. Stuckens, D.H. Kobe, Phys. Rev. A 34, 3565 (1986).

    Article  ADS  Google Scholar 

  27. S.M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box (John Wiley & Sons, New York, 2005).

  28. M. Soltani, H. Ezatabadipour, J. Jalali, P. Darabi, E. Azizi, Gh. Rashedi, Eur. Phys. J. D 67, 256 (2013).

    Article  ADS  Google Scholar 

  29. M. Razavi, PhD Thesis, Massachusetts Institute of Technology (2006).

  30. M.J. Collett, C.W. Gardiner, Phys. Rev. A 30, 1386 (1984).

    Article  ADS  Google Scholar 

  31. B.J. Dalton, S.M. Barnett, B.M. Garraway, Phys. Rev. A 64, 053813 (2001).

    Article  ADS  Google Scholar 

  32. B.J. Dalton, B.M. Garraway, Phys. Rev. A 68, 033809 (2003).

    Article  ADS  Google Scholar 

  33. S. Reynaud, M. Heidmann, Opt. Commun. 71, 209 (1989).

    Article  ADS  Google Scholar 

  34. M.G. Raymer, C.J. McKinstrie, Phys. Rev. A 88, 043819 (2013).

    Article  ADS  Google Scholar 

  35. B.Q. Baragiola, R.L. Cook, A.M. Branczyk, J. Combes, Phys. Rev. A 86, 013811 (2012).

    Article  ADS  Google Scholar 

  36. J.J. Hope, Phys. Rev. A 55, R2531 (1997).

    Article  ADS  Google Scholar 

  37. C.P. Search, S. Ptting, W. Zhang, P. Meystre, Phys. Rev. A 66, 043616 (2002).

    Article  ADS  Google Scholar 

  38. K.J. Blow, R. Loudon, S.J.D. Phoenix, Phys. Rev. A 42, 4102 (1990).

    Article  ADS  Google Scholar 

  39. S. Maniscalco, F. Francica, R.L. Zaffino, N. Lo Gullo, F. Plastina, Phys. Rev. Lett. 100, 090503 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  40. G.R. Guthhrlein et al., Nature 414, 49 (2001).

    Article  ADS  Google Scholar 

  41. P. Maunz et al., Nature 428, 50 (2004).

    Article  ADS  Google Scholar 

  42. A. Wallraff et al., Nature 431, 162 (2004).

    Article  ADS  Google Scholar 

  43. M.A. Sillanpää, J.I. Park, R.W. Simmonds, Nature 449, 438 (2007).

    Article  ADS  Google Scholar 

  44. J. Major et al., Nature 449, 443 (2007).

    Article  ADS  Google Scholar 

  45. K. Koshino, A. Shimizu, Phys. Rep. 412, 191 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  46. P. Facchi, H. Nakazato, S. Pascazio, Phys. Rev. Lett. 86, 2699 (2001).

    Article  ADS  Google Scholar 

  47. P. Facchi et al., Phys. Rev. A 71, 022302 (2001).

    Article  ADS  Google Scholar 

  48. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  49. M.K. Tavassoly, F. Yadollahi, Int. J. Mod. Phys. B 26, 1250027 (2012).

    Article  ADS  Google Scholar 

  50. S.R. Miry, M.K. Tavassoly, Phys. Scr. 85, 035404 (2012).

    Article  ADS  Google Scholar 

  51. H.R. Baghshahi, M.K. Tavassoly, Eur. Phys. J. Plus 130, 37 (2015).

    Article  Google Scholar 

  52. M.J. Faghihi, M.K. Tavassoly, J. Phys. B: At. Mol. Opt. Phys. 45, 035502 (2012).

    Article  ADS  Google Scholar 

  53. M.J. Faghihi, M.K. Tavassoly, M.R. Hooshmandasl, J. Opt. Soc. Am. B Opt. Phys. 30, 1109 (2013).

    Article  ADS  Google Scholar 

  54. M.J. Faghihi, M.K. Tavassoly, J. Opt. Soc. Am. B Opt. Phys. 30, 2810 (2013).

    Article  ADS  Google Scholar 

  55. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  56. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Claredon Press, Oxford, 1997).

  57. W.P. Schleich, Quantum Optics in Phase Space (Cambridge University Press, Cambridge, 1997).

  58. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  59. L. Mandel, Opt. Lett. 4, 205 (1979).

    Article  ADS  Google Scholar 

  60. R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  61. G.M. Palma, K.-A. Suominen, A.K. Eker, Proc. R. Soc. A 452, 567 (1996).

    Article  ADS  Google Scholar 

  62. P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).

    Article  ADS  Google Scholar 

  63. P. Zanardi, Phys. Rev. A 56, 4445 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nourmandipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourmandipour, A., Tavassoly, M.K. A novel approach to entanglement dynamics of two two-level atoms interacting with dissipative cavities. Eur. Phys. J. Plus 130, 148 (2015). https://doi.org/10.1140/epjp/i2015-15148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15148-7

Keywords

Navigation