Skip to main content
Log in

Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

ZnO nanowires (NWs) were grown vertically by electrodeposition technique on a stainless-steel mesh (SSM) substrate in the presence and absence of seed layer. A new contribution to the knowledge of both substrate nature and seed layer dependence on structural, morphological, optical properties is reported. X-ray diffraction revealed that all the samples are mainly crystallized in the wurtzite ZnO phase. In the presence of seed layer onto the SSM substrate, the crystalline nature of ZnO NWs is improved by the enhancement of intensity in (002) peak, which indicates a preferential orientation along this peak. The scanning electron microscopy (SEM) images show that, in the presence of seed layer, nanowires appear uniform and stand perpendicular to the substrate with hexagonal shape, implying the occurrence of the wurtzite ZnO crystal structure. According to optical measurements, the decrease of the band-gap energy is due mainly to the seed layer effect and the SSM substrate contribution. To investigate the effect of seed layer and SSM substrate, a photoeletrochemical (PEC) analysis of ZnO NWs is performed. The photocurrent density produced by the ZnO NWs/ZnO/SSM electrode reached 0.2mA·cm^-2, about two times higher than that measured on the ZnO NWs/SSM electrode. These results indicate that both seed layer and substrate have great potential in photoelectrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, Mater. Sci. Semiconduct. Proc. 2, 247 (1999)

    Article  Google Scholar 

  2. G. Kenanakis, D. Vernardou, E. Koudoumas, N. Katsarakis, J. Crystal Growth 311, 4799 (2009)

    Article  ADS  Google Scholar 

  3. C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Appl. Phys. Lett. 90, 263501 (2007)

    Article  ADS  Google Scholar 

  4. O.D. Jayakumar, V. Sudarsan, C. Sudakar, R. Naik, R.K. Vatsa, A.K. Tyagi, Scr. Mater. 62, 662 (2010)

    Article  Google Scholar 

  5. Q.H. Li, Y.X. Liang, Q. Wang, T.H. Wang, Appl. Phys. Lett. 85, 6389 (2004)

    Article  ADS  Google Scholar 

  6. J.L. Izquierdo, G. Bolanos, V.H. Zapata, O. Moran, Curr. Appl. Phys. 14, 1492 (2014)

    Article  ADS  Google Scholar 

  7. J. Wang, L. Gao, Solid State Commun. 132, 269 (2004)

    Article  ADS  Google Scholar 

  8. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chem. Phys. Lett. 363, 123 (2002)

    Article  ADS  Google Scholar 

  9. R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement, J. Phys. Chem. C 111, 16706 (2007)

    Article  Google Scholar 

  10. S. Peulon, D. Lincot, J. Electrochem. Soc. 145, 864 (1998)

    Article  Google Scholar 

  11. H. Lu, M. Zhang, M. Guo, Appl. Surf. Sci. 317, 672 (2014)

    Article  ADS  Google Scholar 

  12. M. Hsu, C. Chang, Int. J. Hydrogen Energy 39, 16524 (2014)

    Article  Google Scholar 

  13. W. Li Ong, K. Wee Yew, C. Fu Tan, T. Keng Tan Adrian, M. Hong, G. Wei Ho, R. Chem. Soc. Adv. 4, 27481 (2014)

    Google Scholar 

  14. Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17, 1001 (2005)

    Article  Google Scholar 

  15. Y.-H. Kang, Ch.-Gi. Choi, Y.-S. Kim, J.-K. Kim, Mater. Lett. 63, 679 (2009)

    Article  Google Scholar 

  16. M. Breedon, M. Bagher Rahmani, S.-H. Keshmiri, W. Wlodarski, K. Kalantar-Zadeh, Mater. Lett. 64, 291 (2010)

    Article  Google Scholar 

  17. Zi-Neng Ng, Kah-Yoong Chan, Thanaporn Tohsophon, Appl. Surf. Sci. 258, 9604 (2012)

    Article  ADS  Google Scholar 

  18. F. Dehghan Nayeri, E. Asl Soleimani, F. Salehi, Renew. Energy 60, 246 (2013)

    Article  Google Scholar 

  19. O.F. Farhat, M.M. Halim, M.J. Abdullah, M.K.M. Ali, Naser M. Ahmed, M. Bououdina, Superlattices Microstruct. 86, 236 (2015)

    Article  ADS  Google Scholar 

  20. M. Gannouni, I. Ben Assaker, R. Chtourou, Superlattices Microstruct. 61, 22 (2013)

    Article  ADS  Google Scholar 

  21. J.J. Hassan, Z. Hassan, H. Abu-Hassan, J. Alloys Compd. 509, 6711 (2011)

    Article  Google Scholar 

  22. H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Mater. Des. 26, 41 (2005)

    Article  Google Scholar 

  23. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edition (Addison Wesley, Reading, MA, 1978)

  24. A.K. Zak, R. Razali, W.H.A. Majid, M. Darroudi, Int. J. Nanomed. 6, 1399 (2011)

    Google Scholar 

  25. U. Manzoor, M. Islam, L. Tabassam, S. Ur Rahman, Physica E 41, 1669 (2009)

    Article  ADS  Google Scholar 

  26. J. Akikusa, K. Sum, Int. J. Hydrogen Energy 27, 863 (2002)

    Article  Google Scholar 

  27. I.A. Ezenwa, Res. J. Chem. Sci. 2, 26 (2012)

    Google Scholar 

  28. Z.X. Li, L.L. Li, Q. Yuan, W. Feng, J. Xu, L.D. Sun, W.G. Song, C.H. Yan, J. Phys. Chem. C 112, 18405 (2008)

    Article  Google Scholar 

  29. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, J. Appl. Phys. 94, 354 (2003)

    Article  ADS  Google Scholar 

  30. Chu-Chi Ting, Ch-H. Li, Ch-Y. Kuo, Chia-Chen Hsu, Hsiang-Chen Wang, Ming-Hsun Yang, Thin Solid Films 518, 4156 (2010)

    Article  ADS  Google Scholar 

  31. Chang-Feng Yu, Che-Wei Sung, Sy-Hann Chen, Shih-Jye Sun, Appl. Surf. Sci. 256, 792 (2009)

    Article  ADS  Google Scholar 

  32. D. Fan, R. Zhang, X. Wang, Solid State Commun. 150, 824 (2010)

    Article  ADS  Google Scholar 

  33. A. Arslan, E. Hur, S. Ilican, Y. Caglar, M. Caglar, Spectrochim. Acta Part A 128, 716 (2014)

    Article  ADS  Google Scholar 

  34. S.K. Tripathi, Ashok Kumar, S.A. Hashmi, Solid State Ionics 177, 2979 (2006)

    Article  Google Scholar 

  35. B. Muthulakshmi, D. Kalpana, S. Pitchumani, N.G. Renganathan, J. Power Sources 158, 1533 (2006)

    Article  ADS  Google Scholar 

  36. N. Karsta, G. Reya, B. Doisneaub, H. Roussela, R. Deshayesa, V. Consonnia,c, C. Ternonc, D. Bellet, Mater. Sci. Eng. B 176, 653 (2011)

    Article  Google Scholar 

  37. I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, Appl. Phys. Lett. 89, 203117 (2006)

    Article  ADS  Google Scholar 

  38. I. Ben Assaker, M. Gannouni, A. Lamouchi, R. Chtourou, Superlattices Microstruct. 75, 159 (2014)

    Article  ADS  Google Scholar 

  39. L.V. Taveira, M.F. Montemor, M. Da Cunha Belo b, M.G. Ferreira, L.F.P. Dick, Corrosion Sci. 52, 2813 (2010)

    Article  Google Scholar 

  40. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, J. Power Sources 181, 46 (2008)

    Article  ADS  Google Scholar 

  41. M. Gannouni, I. Ben Assaker, R. Chtourou, Int. J. Hydrogen Energy 40, 1 (2015)

    Article  Google Scholar 

  42. Lei Li, Shuming Yang, Weixuan Jing, Zhuangde Jiang, Feng Han, Sensors Actuators A 232, 292 (2015)

    Article  Google Scholar 

  43. X. Zhang, J. Zhao, S. Wanga, H. Dai, X. Sun, Int. J. Hydrogen Energy 39, 8238 (2014)

    Article  Google Scholar 

  44. A. Bera, D. Basak, Appl. Phys. Lett. 93, (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lamouchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamouchi, A., Slimi, B., Ben Assaker, I. et al. Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications. Eur. Phys. J. Plus 131, 201 (2016). https://doi.org/10.1140/epjp/i2016-16201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16201-9

Navigation