Skip to main content
Log in

Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

There have been numbers of conflicting and confusing situations, but also uniformity, in the application of the two most popular fractional derivatives, namely the classic Riemann-Liouville and Caputo fractional derivatives. The range of these issues is wide, including the initialization with the Caputo derivative and its observed difficulties compared to the Riemann-Liouville initialization conditions. In this paper, being aware of these issues and reacting to the newly introduced Caputo-Fabrizio fractional derivative (CFFD) without singular kernel, we introduce a new definition of fractional derivative called the new Riemann-Liouville fractional derivative (NRLFD) without singular kernel. The filtering property of the NRLFD is pointed out by showing it as the derivative of a convolution and contrary to the CFFD, it matches with the function when the order is zero. We also explore various scientific situations that may be conflicting and confusing in the applicability of both new derivatives. In particular, we show that both definitions still have some basic similarities, like not obeying the traditional chain rule. Furthermore, we provide the explicit formula for the Laplace transform of the NRLFD and we prove that, contrary to the CFFD, the NRLFD requires non-constant initial conditions and does not require the function f to be continuous or differentiable. Some simulations for the NRLFD are presented for different values of the derivative order. In the second part of this work, numerical approximations for the first- and second-order NRLFD are developped followed by a concrete application to diffusion. The stability of the numerical scheme is proved and numerical simulations are performed for different values of the derivative order \( \alpha\). They exhibit similar behavior for closed values of \( \alpha\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Brockmann, L. Hufnagel, Phys. Rev. Lett. 98, 178301 (2007)

    Article  ADS  Google Scholar 

  2. E.F. Doungmo Goufo, R. Maritz, J. Munganga, Adv. Differ. Equ. 1, 278 (2014)

    Article  MathSciNet  Google Scholar 

  3. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science, Amsterdam, 2006)

  4. Y. Khan, K. Sayevand, M. Fardi, M. Ghasemi, Appl. Math. Comput. 249, 229 (2014)

    MathSciNet  Google Scholar 

  5. S. Pooseh, H.S. Rodrigues, AIP Conf. Proc. 1389, 739 (2011)

    Article  ADS  Google Scholar 

  6. X.J. Yang, H.M. Srivastava, J.H. He, D. Baleanu, Phys. Lett. A 377, 1696 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Atangana, E.F. Doungmo Goufo, Math. Probl. Eng. 2014, 107535 (2014)

    MathSciNet  Google Scholar 

  8. L. Debnath, Int. J. Math. Educ. Sci. Technol. 35, 487 (2004)

    Article  Google Scholar 

  9. Y. Khan, Q. Wu, N. Faraz, A. Yildirim, M. Madani, Appl. Math. Lett. 25, 1340 (2012)

    Article  MathSciNet  Google Scholar 

  10. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley and Sons, New York, 1993)

  11. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

  12. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

  13. J.A. Tenreiro Machado, AMSF Galhano, J.J. Trujillo, Scientometrics 98, 577 (2014)

    Article  Google Scholar 

  14. X.J. Yang, D. Baleanu, H.M. Srivastava, Appl. Math. Lett. 47, 54 (2015)

    Article  MathSciNet  Google Scholar 

  15. S. Das, Int. J. Appl. Math. Stat. 23, 64 (2011)

    MathSciNet  Google Scholar 

  16. E.F. Doungmo Goufo, Fract. Calc. Appl. Anal. 18, 554 (2015)

    Article  MathSciNet  Google Scholar 

  17. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wien and New York, 1997) pp. 223--276

  18. Heymans, I. Podlubny et al., Rheol. Acta 45, 765 (2006)

    Article  Google Scholar 

  19. M. Caputo, Geophys. J. R. Ast. Soc. 13, 529 (1967) reprinted in Fract. Calc. Appl. Anal. 11

    Article  ADS  Google Scholar 

  20. E.F. Doungmo Goufo, J. Funct. Spaces 2014, 201520 (2014)

    MathSciNet  Google Scholar 

  21. P.I. Lizorkin, Fractional integration and differentiation, in Encyclopedia of Mathematics, edited by Michiel Hazewinkel (Springer, 2001)

  22. K. Abbaoui, Y. Cherruault, Comp. Math. Appl. 28, 103 (1994)

    Article  MathSciNet  Google Scholar 

  23. G. Adomian, Comp. Math. Appl. 27, 145 (1994)

    Article  MathSciNet  Google Scholar 

  24. G. Adomian, Solving Frontier Problems of Physics: The decomposition method (Kluwer Academic, Boston, 1994)

  25. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 1 (2015)

    Google Scholar 

  26. J. Losada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)

    Google Scholar 

  27. A. Atangana, J. Nieto, Adv. Mech. Eng. 7, 10 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile Franc Doungmo Goufo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doungmo Goufo, E., Atangana, A. Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion. Eur. Phys. J. Plus 131, 269 (2016). https://doi.org/10.1140/epjp/i2016-16269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16269-1

Navigation