Skip to main content
Log in

Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We investigate the velocity slip and thermal slip effects on peristaltically driven thermal transport of nanofluids through the vertical parallel plates under the influence of transverse magnetic field. The wall surface is propagating with sinusoidal wave velocity c. The flow characteristics are governed by the mass, momentum and energy conservation principle. Low Reynolds number and large wavelength approximations are taken into consideration to simplify the non-linear terms. Analytical solutions for axial velocity, temperature field, pressure gradient and stream function are obtained under certain physical boundary conditions. Two types of nanoparticles, SiO2 and Ag, are considered for analysis with water as base fluid. This is the first article in the literature that discusses the SiO2 and Ag nanoparticles for a peristaltic flow with variable viscosity. The effects of physical parameters on velocity, temperature, pressure and trapping are discussed. A comparative study of SiO2 nanofluid, Ag nanofluid and pure water is also presented. This model is applicable in biomedical engineering to make thermal peristaltic pumps and other pumping devices like syringe pumps, etc. It is observed that pressure for pure water is maximum and pressure for Ag nanofluid is minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.C., Fung, C.S. Yih, J. Appl. Mech. 35, 669 (1968)

    Article  ADS  Google Scholar 

  2. M. Costa, J.B. Furness, Naunyn-Schmiedeberg's Arch. Pharmacol. 294, 47 (1976)

    Article  Google Scholar 

  3. S.B. Benjamin, D.C. Gerhardt, D.O. Castell, Gastroenterology 77, 478 (1979)

    Google Scholar 

  4. L.M. Srivastava, V.P. Srivastava, J. Biomech. 17, 821 (1984)

    Article  Google Scholar 

  5. P.J. Kahrilas, W.J. Dodds, W.J. Hogan, M. Kern, R.C. Arndorfer, A. Reece, Gastroenterology 91, 897 (1986)

    Article  Google Scholar 

  6. T. Morita, I. Wada, H. Saeki, S. Tsuchida, R.M. Weiss, J. Urol. 137, 132 (1987)

    Google Scholar 

  7. J.R. Grider, A.E. Foxx-Orenstein, J.G. Jin, Gastroenterology 115, 370 (1998)

    Article  Google Scholar 

  8. J.R. Roth, Phys. Plasmas 10, 2117 (2003)

    Article  ADS  Google Scholar 

  9. M.M. Teymoori, E. Abbaspour-Sani, Sensors Actuators A: Physical 117, 222 (2005)

    Article  Google Scholar 

  10. D. Tripathi, Math. Biosci. 233, 90 (2011)

    Article  MathSciNet  Google Scholar 

  11. D. Tripathi, Int. J. Therm. Sci. 51, 91 (2012)

    Article  Google Scholar 

  12. D. Tripathi, J. Bionic Engin. 9, 119 (2012)

    Article  Google Scholar 

  13. W.K.H. Chu, J. Fang, Eur. Phys. J. B 16, 543 (2000)

    Article  ADS  Google Scholar 

  14. A.E.H.A. El Naby, I.I.E. El Shamy, Appl. Math. Sci. 1, 2967 (2007)

    Google Scholar 

  15. A. Ebaid, Phys. Lett. A 372, 4493 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Wang, T. Hayat, M. Oberlack, J. Appl. Mech. 76, 011006 (2009)

    Article  Google Scholar 

  17. S. Srinivas, R. Gayathri, M. Kothandapani, Computer Phys. Commun. 180, 2115 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Ellahi, M. Hameed, Int. J. Numer. Methods Heat & Fluid Flow 22, 24 (2012)

    Article  Google Scholar 

  19. D. Tripathi, Transp. Porous Media 92, 559 (2012)

    Article  MathSciNet  Google Scholar 

  20. D. Tripathi, O.A. Bég, J.L. Curiel-Sosa, Comp. Methods Biomech. Biomed. Engin. 17, 433 (2014)

    Article  Google Scholar 

  21. N.S. Akbar, S. Nadeem, Int. J. Heat Mass Transf. 55, 3964 (2012)

    Article  Google Scholar 

  22. N.S. Akbar, S. Nadeem, Z.H. Khan, Appl. NanoSci. 4, 849 (2014)

    Article  ADS  Google Scholar 

  23. R. Ellahi, A. Riaz, S. Nadeem, Appl. Nanosci. 4, 753 (2014)

    Article  ADS  Google Scholar 

  24. S. Nadeem, A. Riaz, R. Ellahi, N.S. Akbar, Appl. Nanosci. 4, 393 (2014)

    Article  ADS  Google Scholar 

  25. A. Ebaid, Comp. Math. Appl. 68, 77 (2014)

    Article  Google Scholar 

  26. D. Tripathi, O.A. Bég, Int. J. Heat Mass Transf. 70, 61 (2014)

    Article  Google Scholar 

  27. N.S. Akbar, S. Nadeem, Z.H. Khan, Alexandria Engin. J. 53, 191 (2014)

    Article  Google Scholar 

  28. M. Kothandapani, J. Prakash, Int. J. Heat Mass Transf. 81, 234 (2015)

    Article  Google Scholar 

  29. N.S. Akbar, M. Raza, R. Ellahi, Comp. Methods Prog. Biomed. 130, 22 (2015)

    Article  Google Scholar 

  30. M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi, J. Magn. Magn. Mater. 374, 36 (2015)

    Article  ADS  Google Scholar 

  31. B.C. Sarkar, S. Das, R.N. Jana, O.D. Makinde, J. Nanofluids 4, 461 (2015)

    Article  Google Scholar 

  32. M. Kothandapani, J. Prakash, J. Mech. Med. Biol. 15, 1550030 (2015)

    Article  Google Scholar 

  33. R. Ellahi, M.M. Bhatti, A.A. Khan, Wulfenia 22, 248 (2015)

    Google Scholar 

  34. Noreen Sher Akbar, Dharmendra Tripathi, O. Anwar Bég, J. Mech. Med. Biol. 16, 1650088 (2015)

    Article  Google Scholar 

  35. S.E. Ghasemi, M. Vatani, M. Hatami, D.D. Ganji, J. Mol. Liquids 215, 88 (2016)

    Article  Google Scholar 

  36. R. Ellahi, M. Hassan, A. Zeeshan, Asia-Pacific J. Chem. Engin. 11, 179 (2016)

    Article  Google Scholar 

  37. S.U. Rehman, R. Ellahi, S. Nadeem, Q.M. Zaigham Zia, J. Mol. Liquids 218, 484 (2016)

    Article  Google Scholar 

  38. A. Zeeshan, A. Majeed, R. Ellahi, J. Mol. Liquids 215, 549 (2016)

    Article  Google Scholar 

  39. M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liquids 220, 1 (2016)

    Article  Google Scholar 

  40. R. Ellahi, M. Hassan, A. Zeeshan, IEEE Trans. Nanotechnol. 14, 726 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bintul Huda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sher Akbar, N., Bintul Huda, A. & Tripathi, D. Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. Eur. Phys. J. Plus 131, 332 (2016). https://doi.org/10.1140/epjp/i2016-16332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16332-y

Navigation