Skip to main content
Log in

Searching the conditions for a table-like shape of the magnetic entropy in the magnetocaloric LBMO2.98/LBMO2.95 composite

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The conditions to obtain a table-like behavior of the entropy change, on the composite system \((LBMO_{2.98})_{1-x}/(LBMO_{2.95})_{x}\), have been investigated from the isothermal magnetic entropy change versus temperature curves \( \Delta S(T)\) of La2/3Ba1/3MnO2.98 and La2/3Ba1/3MnO2.95 materials. The latters are characterized by Curie temperatures (\( T_{C}\)) values (310 K for La2/3Ba1/3MnO2.98 and 292 K for La2/3Ba1/3MnO2.95 around room temperature. The temperature dependence of the isothermal magnetic entropy change \(\Delta S(T)\) has been calculated for the composite system with \( 0 \le x \le 1\) . The optimum magnetocaloric effect (MCE) properties, i.e., a \(\Delta S(T)\) curve with table-like shape, have been found in the temperature interval of 293-309 K for the composite with \( x = 0.48\) at 1 T. The \(\Delta S(T)\) of the composite comes close to a constant value of 1.73(7)J/(kg ·K). A large refrigerant capacity value of \(\sim 66.4(9)\) J/kg is obtained in a wide temperature span over 16 K. This composite can be used as the working material in the Ericsson-cycle magnetic regenerative refrigerator. These results make the \((LBMO_{2.98})_{0.52}/(LBMO_{2.95})_{0.48}\) system a promising material for practical magnetic refrigeration using a lower field (1 T), which is much easier to generate by permanent magnets, than higher fields, like 2 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.K. Pecharsky, K.A. Gschneiner, J. Magn. & Magn. Mater. 200, 44 (1999)

    Article  ADS  Google Scholar 

  2. S. Choura Maatar, R. Mʼnassri, W. Cheikhrouhou Koubaa, M. Koubaa, A. Cheikhrouhou, J. Solid State Chem. 225, 83 (2015)

    Article  ADS  Google Scholar 

  3. Mahmoud Aly Hamad, J. Therm. Anal. Calorim. 111, 1251 (2013)

    Article  Google Scholar 

  4. Mahmoud Aly Hamad, J. Therm. Anal. Calorim. 115, 523 (2014)

    Article  Google Scholar 

  5. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  6. Mahmoud Aly Hamad, J. Therm. Anal. Calorim. 113, 609 (2013)

    Article  Google Scholar 

  7. K.A. Gschneidner Jr., V.K. Pecharsky, J. Appl. Phys. 85, 5365 (1999)

    Article  ADS  Google Scholar 

  8. R. Mʼnassri, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 626, 20 (2015)

    Article  Google Scholar 

  9. R. Mʼnassri, A. Cheikhrouhou, J. Korean Phys. Soc. 64, 879 (2014)

    Article  Google Scholar 

  10. A. Selmi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 7723 (2015)

    Article  Google Scholar 

  11. F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78, 3675 (2001)

    Article  ADS  Google Scholar 

  12. R. Bjørk, C.R.H. Bahl, M. Katter, J. Magn. & Magn. Mater. 322, 3882 (2010)

    Article  ADS  Google Scholar 

  13. S. Fujieda, A. Fujita, K. Fukamichi, Appl. Phys. Lett. 81, 1276 (2002)

    Article  ADS  Google Scholar 

  14. O. Tegus, E. Bruck, K.H.J. Buschow, F.R. De Boer, Nature 415, 150 (2002)

    Article  ADS  Google Scholar 

  15. V.K. Pecharsky, K.A. Gschneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997)

    Article  ADS  Google Scholar 

  16. F.X. Hu, B. Shen, J. Sun, Z. Cheng, Phys. Rev. B 64, 132412 (2001)

    Article  ADS  Google Scholar 

  17. F.X. Hu, B.G. Shen, J.R. Sun, Appl. Phys. Lett. 76, 3460 (2000)

    Article  ADS  Google Scholar 

  18. N. Kumar Swamy, N. Pavan Kumar, P. Venugopal Reddy, Manish Gupta, S. Shanmukharao Samatham, D. Venkateshwarulu, V. Ganesan, Vikas Malik, B.K. Das, J. Therm. Anal. Calorim. 119, 1191 (2015)

    Article  Google Scholar 

  19. A. Selmi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 10177 (2015)

    Article  Google Scholar 

  20. R. Mʼnassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Boudjada, A. Cheikhrouhou, Solid State Commun. 151, 1579 (2011)

    Article  ADS  Google Scholar 

  21. R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Boudjada, A. Cheikhrouhou, J. Supercond. Nov. Magn. 26, 1429 (2013)

    Article  Google Scholar 

  22. R. Mʼnassri, A. Cheikhrouhou, J. Supercond. Nov. Magn. 27, 421 (2014)

    Article  Google Scholar 

  23. R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, J. Appl. Phys. 113, 073905 (2013)

    Article  ADS  Google Scholar 

  24. B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen, Int. J. Refrig. 26, 622 (2003)

    Article  Google Scholar 

  25. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications (IOP Publishing, Bristol, 2003)

  26. P. Álvarez, J.L. Sánchez, Llamazares, P. Gorria, J.A. Blanco, Appl. Phys. Lett. 99, 232501 (2011)

    Article  ADS  Google Scholar 

  27. H. Mbarek, R. Mʼnasri, W. Cheikhrouhou-Koubaa, Phys. Status Solidi 211, 975 (2014)

    Article  Google Scholar 

  28. M.E. Wood, W.H. Potter, Cryogenics 25, 667 (1985)

    Article  ADS  Google Scholar 

  29. R. Mʼnassri, J. Supercond. Nov. Magn. 27, 1787 (2014)

    Article  Google Scholar 

  30. J. Świerczek, T. Mydlarz, J. Alloys Compd. 509, 9340 (2011)

    Article  Google Scholar 

  31. P. Álvarez, P. Gorria, J.L. Sánchez Llamazares, M.J. Pérez, V. Franco, M. Reiffers, I. Čurlik, E. Gažo, J. Kováč, J.A. Blanco, Intermetallics 19, 982 (2011)

    Article  Google Scholar 

  32. P. Álvarez, P. Gorria, V. Franco, J. Sánchez Marcos, M.J. Pérez, J.L. Sánchez Llamazares, I. Puente-Orench, J.A. Blanco, J. Phys.: Condens. Matter 22, 216005 (2010)

    ADS  Google Scholar 

  33. A. Smith, Adv. Energy Mater. 2, 1288 (2012)

    Article  Google Scholar 

  34. W. Zhong, W. Chen, C.T. Au, Y.W. Du, J. Magn. & Magn. Mater. 261, 238 (2003)

    Article  ADS  Google Scholar 

  35. M.A. Hamad, Phase Transit. 85, 106 (2012)

    Article  Google Scholar 

  36. R. Mʼnassri, A. Cheikhrouhou, J. Supercond. Nov. Magn. 27, 1463 (2014)

    Article  Google Scholar 

  37. S.C. Paticopoulos, R. Caballero-Flores, V. Franco, J.S. Blazquez, A. Conde, K.E. Knipling, M.A. Willard, Solid State Commun. 152, 1590 (2012)

    Article  ADS  Google Scholar 

  38. A. Smaili, R. Chahine, Cryogenics 38, 247 (1998)

    Article  ADS  Google Scholar 

  39. R. Mʼnassri, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 42, 7447 (2016)

    Article  Google Scholar 

  40. H. Takeya, V.K. Pecharsky, K.A. Gschneidner, J.O. Moorman, Appl. Phys. Lett. 64, 2739 (1994)

    Article  ADS  Google Scholar 

  41. P. Gorria, J.L. Sánchez Llamazares, P. Álvarez, M.J. Pérez, J. Sánchez Marcos, J.A. Blanco, J. Phys. D: Appl. Phys. 41, 192003 (2008)

    Article  ADS  Google Scholar 

  42. J.A. Barclay, J. Alloys Compd. 207--208, 355 (1994)

    Article  Google Scholar 

  43. R. Mʼnassri, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 640, 183 (2015)

    Article  Google Scholar 

  44. A. Selmi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 619, 627 (2015)

    Article  Google Scholar 

  45. J.J. Wang, Z.D. Han, Q. Tao, B. Qian, P. Zhang, X.F. Jiang, Physica B 416, 76 (2013)

    Article  ADS  Google Scholar 

  46. A.M. Aliev, A.G. Gamzatov, K.I. Kamilov, A.R. Kaul, N.A. Babushkina, Appl. Phys. Lett. 101, 172401 (2012)

    Article  ADS  Google Scholar 

  47. M. Foldeaki, R. Chahine, T.K. Bose, J. Appl. Phys. 77, 3528 (1995)

    Article  ADS  Google Scholar 

  48. H. Yang, Y.H. Zhu, T. Xian, J.L. Jiang, J. Alloys Compd. 555, 150 (2013)

    Article  Google Scholar 

  49. X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu et al., Appl. Phys. Lett. 77, 3072 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M’nassri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M’nassri, R. Searching the conditions for a table-like shape of the magnetic entropy in the magnetocaloric LBMO2.98/LBMO2.95 composite. Eur. Phys. J. Plus 131, 392 (2016). https://doi.org/10.1140/epjp/i2016-16392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16392-y

Navigation