Skip to main content
Log in

Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Glasses having a composition 15V2O5-5ZnO-(80-x P2O5-xLi2O (x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li2O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as \(\omega^{n}\), and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of \(n \le 0.5\) confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, \(\beta\), is dependent on temperature. The analysis of the temperature variation of the M” peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. El-Deskoky, M.Y. Hassaan, Phys. Chem. Glasses 43, 1 (2002)

    Google Scholar 

  2. A. Al-Hajry, N. Tashtoush, M.M. El-Desoky, Physica B 368, 51 (2005)

    Article  ADS  Google Scholar 

  3. Andrea Moguš-Milanković, Kristina Sklepić, Petr Mošner, Ladislav Koudelka, Petr Kalenda, J. Phys. Chem. B 120, 3978 (2016)

    Article  Google Scholar 

  4. K.M. Ereiba, A.S. Abd Raboh, A.G. Mostafa, Nat. Sci. 12, 97 (2014)

    Google Scholar 

  5. L. Murawski, R.J. Barczynski, Solid State Ionics 176, 2145 (2005)

    Article  Google Scholar 

  6. M. Pant, D.K. Kanchan, P. Sharma, M.S. Jayswal, Mater. Sci. Eng. B 149, 18 (2008)

    Article  Google Scholar 

  7. R. Punia, R.S. Kundu, S. Murugavel, N. Kishore, J. Appl. Phys. 112, 113716 (2012)

    Article  ADS  Google Scholar 

  8. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, J. Appl. Phys. 112, 083701 (2012)

    Article  ADS  Google Scholar 

  9. F.E. Salman, N.H. Shash, H. Abou El-Haded, M.K. El-Mansy, J. Phys. Chem. Solids 63, 1957 (2002)

    Article  ADS  Google Scholar 

  10. A.M. Abdel-Ghany, T.Z. Amer, A.A. Bendary, A.G. Mostafa, J. Nucl. Part. Phys. 5, 101 (2015)

    Google Scholar 

  11. S.R. Elliot, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  12. S.R. Elliot, Phil. Mag. 36, 1291 (1977)

    Article  ADS  Google Scholar 

  13. S.R. Elliot, Phil. Mag. B 37, 553 (1978)

    Article  ADS  Google Scholar 

  14. G. Paramesh, Rahul Vaish, K.B.R. Varma, J. Non-Cryst. Solids 357, 1479 (2011)

    Article  ADS  Google Scholar 

  15. S. Rani, S. Sanghi, A. Agarwal, N. Kishore, Solid State Phenom. 161, 51 (2010)

    Article  Google Scholar 

  16. J.E. Garbarczyk, P. Jozwiak, M. Wasiucionek, J.L. Nowinski, Solid State Ionics 175, 691 (2004)

    Article  Google Scholar 

  17. Yousheng Xu, Catherine Mc. Cammon, J. Geophys. Res. 107, 2251 (2002)

    Google Scholar 

  18. A. Santić, C.W. Kim, D.E. Day, A. Moguš-Milanković, J. Non-Cryst. Solids 356, 2699 (2010)

    Article  ADS  Google Scholar 

  19. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  ADS  Google Scholar 

  20. P. Melnikov, C. Leon, J. Santamaria, F. Sanchez-Quesada, J. Alloy Compd. 250, 520 (1997)

    Article  Google Scholar 

  21. R. Vaish, K.B.R. Varma, J. Appl. Phys. 106, 114109 (2009)

    Article  ADS  Google Scholar 

  22. K. Majhi, K.B.R. Varma, K.J. Rao, J. Appl. Phys. 106, 084106 (2009)

    Article  ADS  Google Scholar 

  23. S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ionics 146, 329 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sdiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langar, A., Sdiri, N., Elhouichet, H. et al. Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system. Eur. Phys. J. Plus 131, 421 (2016). https://doi.org/10.1140/epjp/i2016-16421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16421-y

Navigation