Skip to main content

Advertisement

Log in

Investigation on the physical properties of C-doped ZnO thin films deposited by the thermionic vacuum arc

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The aim of this study is to determine some physical properties of C-doped ZnO coated on a glass substrate by using the thermionic vacuum arc method. The produced C-doped ZnO thin film is characterized by using several analysis techniques. The produced thin film has a cubic crystal structure, high transmittance in the visible region, symmetrical surface distribution, and optical band gap energy of 3.34 eV. According to the XRD analysis of the produced thin film, it is a fullerene (C60)-doped polycrystalline ZnO. Hardness value and Young's modulus value were determined as 8 GPa and 140 GPa, respectively. These physical properties are adequate for future transparent electrode applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-G. Lin et al., Nanoscale 4, 6515 (2012)

    Article  ADS  Google Scholar 

  2. D.-Y. Son et al., J. Phys. Chem. C 118, 16567 (2014)

    Article  Google Scholar 

  3. S.-H. Liao et al., J. Mater. Chem. A 3, 22599 (2015)

    Article  Google Scholar 

  4. S. Safa, R. Sarraf-Mamoory, R. Azimirad, Physica E 57, 155 (2014)

    Article  ADS  Google Scholar 

  5. J. Qi et al., Nanoscale 6, 6025 (2014)

    Article  ADS  Google Scholar 

  6. L. Zhu et al., J. Am. Ceram. Soc. 96, 3183 (2013)

    Google Scholar 

  7. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Ceram. Int. 40, 13115 (2014)

    Article  Google Scholar 

  8. P. Rai, Y.-T. Yu, Sensors Actuat. B 173, 58 (2012)

    Article  Google Scholar 

  9. S. Sharma et al., Superlattice Microstruct. 75, 378 (2014)

    Article  ADS  Google Scholar 

  10. F. Schuster et al., Acs Nano. 8, 4376 (2014)

    Article  Google Scholar 

  11. N. Jalali et al., J. Sol-Gel. Sci. Technol. 73, 544 (2015)

    Article  Google Scholar 

  12. R. Mohan et al., J. Nanosci. Nanotechnol. 13, 3573 (2013)

    Article  Google Scholar 

  13. N. Nagarani, V. Vasu, J. Photon. Spintron. 2, 19 (2013)

    Google Scholar 

  14. S. Benramache et al., Optik 125, 1303 (2014)

    Article  ADS  Google Scholar 

  15. X. Bao et al., Mater. Sci. Eng. B 178, 263 (2013)

    Article  Google Scholar 

  16. J.-J. Chen, X.-R. Deng, H. Deng, J. Mater. Sci. 48, 532 (2013)

    Article  ADS  Google Scholar 

  17. C. Cachoncinlle et al., Appl. Surf. Sci. 336, 103 (2015)

    Article  ADS  Google Scholar 

  18. Z.T. Al-dahan, M.A.A. Ameer, J. Opt. 42, 194 (2013)

    Article  Google Scholar 

  19. S. Pat et al., J. Nanoelectron. Optoelectron. 10, 183 (2015)

    Article  Google Scholar 

  20. O. Chichvarina et al., J. Mater. Sci. 50, 28 (2015)

    Article  ADS  Google Scholar 

  21. H. Liu et al., Appl. Phys. Lett. 102, 181908 (2013)

    Article  ADS  Google Scholar 

  22. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009)

  23. A. Segura et al., Appl. Phys. Lett. 83, 278 (2003)

    Article  ADS  Google Scholar 

  24. E. AlArfaj, A. Subahi, Superlattices Microstruct. 86, 508 (2015)

    Article  ADS  Google Scholar 

  25. S. Cui et al., J. Alloys Compd. 476, 306 (2009)

    Article  Google Scholar 

  26. J.E. Jaffe et al., Phys. Rev. B 62, 1660 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Zhang et al., Chem. Phys. Lett. 557, 102 (2013)

    Article  ADS  Google Scholar 

  28. Ü. Özgür, V. Avrutin, H. Morkoç, Molecular Beam Epitaxy (Elsevier, 2013)

  29. H. Matsui, H. Tabata, in OPTO (International Society for Optics and Photonics, 2010) pp. 760307

  30. Y.J. Zhang et al., Vacuum 99, 160 (2014)

    Article  ADS  Google Scholar 

  31. H. Ehrich et al., Thin Solid Films 343, 63 (1999)

    Article  ADS  Google Scholar 

  32. C. Lungu et al., Phys. Scr. 2007, 157 (2007)

    Article  Google Scholar 

  33. S. Özen et al., Mater. Res. Express 3, 045012 (2016)

    Article  ADS  Google Scholar 

  34. C. Lungu et al., IEEE Trans. Plasma Sci. 40, 3546 (2012)

    Article  ADS  Google Scholar 

  35. S. Özen et al., J. Alloys Compd. 653, 162 (2015)

    Article  Google Scholar 

  36. M.Z. Balbag et al., Physica B 405, 3276 (2010)

    Article  ADS  Google Scholar 

  37. I. Jepu et al., Surf. Coat. Technol. 240, 344 (2014)

    Article  Google Scholar 

  38. R.N. Tiwari et al., Chem. Commun. 48, 3003 (2012)

    Article  Google Scholar 

  39. J. Martínez-Reyes et al., ISRN Nanomater. 2013, 524548 (2013)

    Article  Google Scholar 

  40. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  41. G. Pharr, Mater. Sci. Eng. A. 253, 151 (1998)

    Article  Google Scholar 

  42. S. Özen et al., J. Mater. Sci.: Mater. Electron. 26, 5060 (2015)

    Google Scholar 

  43. S. Kucheyev et al., Appl. Phys. Lett. 80, 956 (2002)

    Article  ADS  Google Scholar 

  44. M. Mayo et al., J. Mater. Res. 7, 973 (1992)

    Article  ADS  Google Scholar 

  45. T.-H. Fang, W.-J. Chang, C.-M. Lin, Mater. Sci. Eng.: A 452, 715 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soner Özen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadigharehbagh, R., Özen, S., Hakan Yudar, H. et al. Investigation on the physical properties of C-doped ZnO thin films deposited by the thermionic vacuum arc. Eur. Phys. J. Plus 132, 28 (2017). https://doi.org/10.1140/epjp/i2017-11322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11322-3

Navigation