Skip to main content
Log in

Numerical analysis of 3D micropolar nanofluid flow induced by an exponentially stretching surface embedded in a porous medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present article is devoted to probe the behavior of a three-dimensional micropolar nanofluid over an exponentially stretching surface in a porous medium. The mathematical model is constructed in the form of partial differential equations using the boundary layer approach. Then by employing similarity transformations, the modelled partial differential equations are transformed to ordinary differential equations. The solution of subsequent ODEs is derived by utilizing the BVP-4C technique alongside the shooting scheme. The graphical illustrations are presented to interpret the salient features of pertinent physical parameters on the concerned profiles for different kinds of nanoparticles, namely copper, titania and alumina with water as the base fluid. For a better understanding of the fluid flow, the numerical variation in the local skin friction coefficients, \( Cf_{x}\) and \( Cf_{y}\) , and local Nusselt number is analyzed through tables. We can see, from the present study, that the omission of porous matrix enhances the flow of the fluid. Microrotation has a decreasing impact on the skin friction whereas it increases the rate of the heat transfer of the nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.C. Sakiadis, AIChE J. 7, 26 (1961)

    Article  Google Scholar 

  2. F.K. Tsou, E.M. Sparrow, R. Jh Goldstein, Int. J. Heat Mass Transfer 10, 219 (1967)

    Article  Google Scholar 

  3. P.S. Gupta, A.S. Gupta, Can. J. Chem. 55, 744 (1977)

    Article  Google Scholar 

  4. Ramya, Dodda, R. Srinivasa Raju, J. Anand Rao, J. Nanofluids 6, 541 (2017)

    Article  Google Scholar 

  5. R. Ellahi, R. Ellahi, A. Zeeshan, A. Zeeshan, Mohsan Hassan, Mohsan Hassan, Int. J. Numer. Methods Heat Fluid Flow 26, 2160 (2016)

    Article  Google Scholar 

  6. E. Magyari, B. Keller, J. Phys. D: Appl. Phys. 32, 577 (1999)

    Article  ADS  Google Scholar 

  7. I-Chung Liu, Hung-Hsun Wang, Yih-Ferng Peng, Chem. Eng. Commun. 200, 253 (2013)

    Article  Google Scholar 

  8. B. Ahmad, Z. Iqbal, Front. Heat Mass Transf. 8, 22 (2017)

    Article  MathSciNet  Google Scholar 

  9. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, Vol. 231 (ASME, 1995) pp. 99-105

  10. Jacopo Buongiorno, J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  11. J.A. Esfahani, M. Akbarzadeh, Saman Rashidi, M.A. Rosen, R. Ellahi, Int. J. Heat Mass Transfer 109, 1162 (2017)

    Article  Google Scholar 

  12. N. Shehzad, A. Zeeshan, R. Ellahi, K. Vafai, J. Mol. Liq. 222, 446 (2016)

    Article  Google Scholar 

  13. Kamel Milani Shirvan, Mojtaba Mamourian, Soroush Mirzakhanlari, Rahmat Ellahi, Powder Technol. 313, 99 (2017)

    Article  Google Scholar 

  14. S.U. Rahman, R. Ellahi, S. Nadeem, QM Zaigham Zia, J. Mol. Liq. 218, 484 (2016)

    Article  Google Scholar 

  15. M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)

    Article  Google Scholar 

  16. Saman Rashidi, Javad Aolfazli Esfahani, Rahmat Ellahi, J. Appl. Sci. 7, 431 (2017)

    Article  Google Scholar 

  17. Kamel Milani Shirvan, Rahmat Ellahi, Mojtaba Mamourian, Mohammad Moghiman, Int. J. Heat Mass Transfer 107, 1110 (2017)

    Article  Google Scholar 

  18. R. Ellahi, M.H. Tariq, M. Hassan, K. Vafai, J. Mol. Liq. 229, 339 (2017)

    Article  Google Scholar 

  19. M.M. Bhatti, A. Zeeshan, R. Ellahi, Microvasc. Res. 110, 32 (2017)

    Article  Google Scholar 

  20. Kamel Milani Shirvan, Mojtaba Mamourian, Soroush Mirzakhanlari, R. Ellahi, J. Mol. Liq. 220, 888 (2016)

    Article  Google Scholar 

  21. Mohsan Hassan, Ahmad Zeeshan, Aaqib Majeed, Rahmat Ellahi, J. Magn. & Magn. Mater. 443, 36 (2017)

    Article  ADS  Google Scholar 

  22. Sohail Nadeem, Rizwan Ul Haq, Zafar Hayat Khan, Alex. Eng. J. 53, 219 (2014)

    Article  Google Scholar 

  23. Avtar Singh Ahuja, J. Appl. Phys. 46, 3408 (1975)

    Article  ADS  Google Scholar 

  24. A. Cemal Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Article  Google Scholar 

  25. A. Cemal Eringen, J. Appl. Math. Mech. 16, 1 (1966)

    Google Scholar 

  26. Grzegorz Lukaszewicz, Micropolar fluids: theory and applications, in Springer Science & Business Media (Springer, 1999)

  27. A. Cemal Eringen, Microcontinuum field theories: II. Fluent media, Vol. 2, Springer Science & Business Media (Springer, 2001)

  28. Ali J. Chamkha, M. Jaradat, I. Pop, Int. J. Fluid Mech. Res., https://doi.org/10.1615/InterJFluidMechRes.v30.i4.10 (2003)

  29. Mohamed Abd El-Aziz, Can. J. Phys. 87, 359 (2009)

    Article  ADS  Google Scholar 

  30. B. Mohanty, S.R. Mishra, H.B. Pattanayak, Alex. Eng. J. 54, 223 (2015)

    Article  Google Scholar 

  31. Syed Tauseef Mohyud-Din, Saeed Ullah Jan, Umar Khan, Naveed Ahmed, Neural Comput. Appl., https://doi.org/10.1007/s00521-016-2493-3 (2016)

  32. S.T. Hussain, Sohail Nadeem, Rizwan Ul Haq, Eur. Phys. J. Plus 129, 161 (2014)

    Article  Google Scholar 

  33. M.T. Kamel, D. Roach, M.H. Hamdan, in Proceedings of the WSEAS International Conference on Mathematics and Cpmputers in Science and Engineering no. 11 (WSEAS, 2009)

  34. Michael W. Heruska, Layne T. Watson, Kishore Kumar Sankara, Comput. Fluids 14, 117 (1986)

    Article  MathSciNet  Google Scholar 

  35. Heidar Hashemi, Zafar Namazian, S.A.M. Mehryan, J. Mol. Liq. 236, 48 (2017)

    Article  Google Scholar 

  36. M. Turkyilmazoglu, Int. J. Nonlinear Mech. 83, 59 (2016)

    Article  ADS  Google Scholar 

  37. A. Zeeshan, R. Ellahi, M. Hassan, Eur. Phys. J. Plus 129, 261 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Subhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subhani, M., Nadeem, S. Numerical analysis of 3D micropolar nanofluid flow induced by an exponentially stretching surface embedded in a porous medium. Eur. Phys. J. Plus 132, 441 (2017). https://doi.org/10.1140/epjp/i2017-11660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11660-0

Navigation