Skip to main content
Log in

Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from \( 25 {}^{\circ}{\rm C}\) to \( 400 {}^{\circ}{\rm C}\) , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of \( 300 {}^{\circ}{\rm C}\) , and the sample obtained at \( 400 {}^{\circ}{\rm C}\) presented a maximum angle of the direction of the surface structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-H. Ma, J.-H. Huang, H. Chen, Surf. Coat. Technol. 200, 3868 (2006)

    Article  Google Scholar 

  2. W.-J. Chou, G.-P. Yu, J.-H. Huang, Surf. Coat. Technol. 140, 206 (2001)

    Article  Google Scholar 

  3. W.-J. Chou, G.-P. Yu, J.-H. Huang, Surf. Coat. Technol. 149, 7 (2002)

    Article  Google Scholar 

  4. M. Azadi, A.S. Rouhaghdam, S. Ahangarani, H.H. Mofidi, M. Valiei, Adv. Mater. Res. 829, 476 (2014)

    Article  Google Scholar 

  5. Helen E. Rebenne, Deepak G. Bhat, Surf. Coat. Technol. 63, 1 (1994)

    Article  Google Scholar 

  6. Shanyong Zhang, Weiguang Zhu, J. Mater. Process. Technol. 39, 165 (1993)

    Article  Google Scholar 

  7. H. Mofidi, A.S.R. Aghdam, S. Ahangarani, M. Bozorg, M. Azadi, M. Valiei, Mater. Sci. Appl. 5, 140 (2014)

    Google Scholar 

  8. H.H. Mofidi, A.S. Rouhaghdam, S. Ahangarani, M. Bozorg, M. Azadi, Adv. Mater. Res. 829, 466 (2014)

    Article  Google Scholar 

  9. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971)

  10. Ruud P. van Hove, Inger N. Sierevelt, Barend J. van Royen, Peter A. Nolte, BioMed. Res. Int. 2015, 485975 (2015)

    Article  Google Scholar 

  11. Z. Cheng, H. Peng, G. Xie, Y. Shi, Surf. Coat. Technol. 138, 237 (2001)

    Article  Google Scholar 

  12. N. Ghobadi, M. Ganji, C. Luna, A. Ahmadpourian, A. Arman, Opt. Quantum Electron. 48, 467 (2016)

    Article  Google Scholar 

  13. K. Xu, J. Chen, R. Gao, J. He, Surf. Coat. Technol. 58, 37 (1993)

    Article  Google Scholar 

  14. D. Dastan, S.L. Panahi, A.P. Yengantiwar, A.G. Banpurkar, Adv. Sci. Lett. 22, 950 (2016)

    Article  Google Scholar 

  15. Y. Wang, A. Capretti, L. Dal Negro, Opt. Mater. Express 5, 2415 (2015)

    Article  Google Scholar 

  16. Guo-ran Li, Feng Wang, Qi-wei Jiang, Xue-ping Gao, Pan-wen Shen, Angew. Chem. Int. Ed. 49, 3653 (2010)

    Article  Google Scholar 

  17. A. Achour, M. Chaker, H. Achour, A. Arman, M. Islam, M. Mardani, M. Boujtita, L. Le Brizoual, M.A. Djouadi, T. Brousse, J. Power Sources 359, 349 (2017)

    Article  ADS  Google Scholar 

  18. Amine Achour, Raul Lucio Porto, Mohamed-Akram Soussou, Mohammad Islam, Mohammed Boujtita, Kaltouma Ait Aissa, Laurent Le Brizoual, Abdou Djouadi, Thierry Brousse, J. Power Sources 300, 525 (2015)

    Article  ADS  Google Scholar 

  19. A. Achour, R. Lucio-Porto, M. Chaker, A. Arman, A. Ahmadpourian, M.A. Soussou, M. Boujtita, L. Le Brizoual, M.A. Djouadi, T. Brousse, Electrochem. Commun. 77, 40 (2017)

    Article  Google Scholar 

  20. B. Bogdanović, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte, F. Schüth, Adv. Mater. 15, 1012 (2003)

    Article  Google Scholar 

  21. Stefan Kaskel, Klaus Schlichte, Tobias Kratzke, J. Mol. Catalysis A 208, 291 (2004)

    Article  Google Scholar 

  22. M. Birkholz, K.-E. Ehwald, D. Wolansky, I. Costina, C. Baristiran-Kaynak, M. Fröhlich, H. Beyer, A. Kapp, F. Lisdat, Surf. Coat. Technol. 204, 2055 (2010)

    Article  Google Scholar 

  23. S. Ramazanov, S. Ţălu, D. Sobola, S. Stach, G. Ramazanov, Superlattices Microstruct. 86, 395 (2015)

    Article  Google Scholar 

  24. S. Ţălu, S. Stach, S. Valedbagi, S. Mohammad Elahi, R. Bavadi, Mater. Sci. Poland 33, 137 (2015)

    Google Scholar 

  25. T. Larsson, H.O. Blom, C. Nender, S. Berg, J. Vacuum Sci. Technol. A 6, 1832 (1988)

    Article  ADS  Google Scholar 

  26. A. Arman, S. Ţălu, C. Luna, A. Ahmadpourian, M. Naseri, M. Molamohammadi, J. Mater. Sci. 26, 9630 (2015)

    Google Scholar 

  27. S. Stach, D. Dallaeva, S. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Mater. Sci. Poland 33, 175 (2015)

    Google Scholar 

  28. Siegfried Hofmann, Thin Solid Films 191, 335 (1990)

    Article  Google Scholar 

  29. N. Ouldhamadouche, A. Achour, K. Ait Aissa, M. Islam, A. Ahmadpourian, A. Arman, M.A. Soussou, M. Chaker, L. Le Brizoual, M.A. Djouadi, Thin Solid Films 622, 23 (2017)

    Article  ADS  Google Scholar 

  30. S. Ţălu, S. Stach, A. Méndez, G. Trejo, M. Ţălu, J. Electrochem. Soc. 161, D44 (2014)

    Article  Google Scholar 

  31. Ş. Ţălu, Micro and nanoscale characterization of three dimensional surfaces. Basics and applications (Napoca Star Publishing House, Cluj-Napoca, Romania, 2015)

  32. S. Stach, Z. Garczyk, S. Ţălu, S. Solaymani, A. Ghaderi, R. Moradian, N.B. Nezafat, S.M. Elahi, H. Gholamali, J. Phys. Chem. C 119, 17887 (2015)

    Article  Google Scholar 

  33. S. Ţălu, A.J. Ghazai, S. Stach, A. Hassan, Z. Hassan, M. Ţălu, J. Mater. Sci. 25, 466 (2014)

    Google Scholar 

  34. S. Ţălu, R.P. Yadav, A.K. Mittal et al., Opt. Quantum Electron. 49, 256 (2017)

    Article  Google Scholar 

  35. S. Ţălu, S. Stach, D. Raoufi, F. Hosseinpanahi, Electr. Mater. Lett. 11, 749 (2015)

    Article  ADS  Google Scholar 

  36. N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, J. Mater. Sci. 27, 2800 (2016)

    Google Scholar 

  37. S. Stach, W. Sapota, S. Ţălu, A. Ahmadpourian, C. Luna, N. Ghobadi, A. Arman, M. Ganji, J. Mater. Sci. 28, 2113 (2017)

    Google Scholar 

  38. MountainsMap 7 Software (Digital Surf, Besançon, France) available at: http://www.digitalsurf.fr (last accessed March 10th, 2017)

  39. ISO 25178-2, 2012 Geometrical product specifications (GPS) -- Surface texture: Areal -- Part 2: Terms, definitions and surface texture parameters (2012) http://www.iso.org (last accessed March 10th, 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azin Ahmadpourian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagoń, K., Stach, S., Ţălu, Ş. et al. Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques. Eur. Phys. J. Plus 132, 520 (2017). https://doi.org/10.1140/epjp/i2017-11801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11801-5

Navigation