Skip to main content
Log in

Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

The onset of nanofluid convection in the presence of an externally applied magnetic field is investigated numerically based on the non-homogeneous Buongiorno’s mathematical model. In this study, we use the latest experimental correlations and powerful analytical models for expressing the thermo-physical properties of some electrically conducting nanofluids, such as copper-water, sliver-water and gold-water nanofluids, in which the Brownian motion and thermophoresis effects on slip flow in nanofluids are taken into account in this model (i.e., two-phase transport model). In this paper, we assume that the nanofluid has Newtonian behavior, confined horizontally between two infinite impermeable boundaries and heated from below, in such a way that the nanoparticles tend to concentrate near the upper wall. Considering the basic state of the nanofluidic system, the linear stability theory has been successfully applied to obtain the principal stability equations, which are solved numerically for an imposed volumetric fraction of nanoparticles and no-slip impermeable conditions at the isothermal walls bounding the nanofluid layer. The linear boundary-value problem obtained in this investigation is converted into a pure initial-value problem, so that we can solve it numerically by the fourth-fifth-order Runge-Kutta-Fehlberg method. The generalized Buongiorno’s mathematical model proposed in this study allows performing a highly accurate computational analysis. In addition, the obtained results show that the stability of the studied nanofluidic system depends on several parameters, namely, the magnetic Chandrasekhar number Q , the reference value for the volumetric fraction of nanoparticles \( \phi_0\) and the size of nanoparticles \( d_p\) . In this analysis, the thermo-hydrodynamic stability of the studied nanofluid is controlled through the critical thermal Rayleigh number \( R_{ac}\) , which characterizes the onset of convection cells, whose size is \( L_c=2\pi/a_c\) . Furthermore, the effects of various pertinent parameters on the critical stability parameters \( R_{ac}\) and \( a_c\) are discussed in more detail through graphical and tabular illustrations, for three types of nanofluids including copper-water, sliver-water, and gold-water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, Vol. 231 (ASME, 1995) pp. 99--105

  2. J. Buongiorno, J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  3. P.G. Siddheshwar, C. Kanchana, Y. Kakimoto, A. Nakayama, J. Heat Transf. 139, 012402 (2017)

    Article  Google Scholar 

  4. A. Wakif, Z. Boulahia, R. Sehaqui, Int. J. Adv. Comput. Sci. Appl. 7, 299 (2016)

    Google Scholar 

  5. A. Wakif, Z. Boulahia, R. Sehaqui, J. Nanofluids 6, 136 (2017)

    Article  Google Scholar 

  6. B.S. Bhadauria, S. Agarwal, A. Kumar, Transp. Porous Media 90, 605 (2011)

    Article  MathSciNet  Google Scholar 

  7. B.S. Bhadauria, P. Kiran, M. Belhaq, MATEC Web Conf. 16, 09003 (2014)

    Article  Google Scholar 

  8. D. Yadav, C. Kim, J. Lee, H.H. Cho, Comput. Fluids 121, 26 (2015)

    Article  MathSciNet  Google Scholar 

  9. T. Hayat, T. Muhammad, S.A. Shehzad, A. Alsaedi, Int. J. Therm. Sci. 111, 274 (2017)

    Article  Google Scholar 

  10. A. Wakif, Z. Boulahia, M. Zaydan et al., Int. J. Innov. Appl. Stud. 14, 1048 (2016)

    Google Scholar 

  11. A. Wakif, Z. Boulahia, R. Sehaqui, Results Phys. 7, 2134 (2017)

    Article  ADS  Google Scholar 

  12. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Oxford University Press, Oxford, 1961)

  13. D.A. Nield, A.V. Kuznetsov, Eur. J. Mech. 29, 217 (2010)

    Article  Google Scholar 

  14. D. Yadav, J. Lee, Eur. Phys. J. Plus 130, 162 (2015)

    Article  Google Scholar 

  15. D. Yadav, J. Wang, R. Bhargava et al., Appl. Therm. Eng. 103, 1441 (2016)

    Article  Google Scholar 

  16. G.S. McNab, A. Meisen, J. Colloid Interface Sci. 44, 339 (1973)

    Article  ADS  Google Scholar 

  17. M. Corcione, Energy Convers. Manag. 52, 789 (2011)

    Article  Google Scholar 

  18. T. Armaghani, A. Kasaeipoor, N. Alavi, M.M. Rashidi, J. Mol. Liq. 223, 243 (2016)

    Article  Google Scholar 

  19. M. Sheikholeslami, D.D. Ganji, M. Gorji-Bandpy, S. Soleimani, J. Taiwan Inst. Chem. Eng. 45, 795 (2014)

    Article  Google Scholar 

  20. K. Mehmood, S. Hussain, M. Sagheer, Int. J. Heat Mass Transfer 109, 397 (2017)

    Article  Google Scholar 

  21. J.C.M. Garnett, Philos. Trans. R. Soc. London Ser. A 203, 385 (1904)

    Article  ADS  Google Scholar 

  22. A.H. Sihvola, I.V. Lindell, Effective permeability of mixtures (Helsinki University of Technology, 1989)

  23. D. Yadav, R. Bhargava, G.S. Agrawal, J. Eng. Math. 80, 147 (2013)

    Article  Google Scholar 

  24. A. Wakif, Z. Boulahia, R. Sehaqui, Results Phys. (2018) https://doi.org/10.1016/j.rinp.2018.01.066

  25. J.F. Schenck, Med. Phys. 23, 815 (1996)

    Article  Google Scholar 

  26. P.G. Siddheshwar, N. Meenakshi, Int. J. Appl. Comput. Math. 3, 271 (2017)

    Article  MathSciNet  Google Scholar 

  27. T. Hayat, B. Ahmed, F.M. Abbasi, A. Alsaedi, J. Mol. Liq. 234, 324 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Wakif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakif, A., Boulahia, Z., Mishra, S.R. et al. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur. Phys. J. Plus 133, 181 (2018). https://doi.org/10.1140/epjp/i2018-12037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12037-7

Navigation