Skip to main content
Log in

Impacts of hematite, bunsenite and maghemite impurities on the physical and antimicrobial properties of silver nanoparticles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nanometric silver nanoparticles AgNPs, accompanied by different impurities hematite, bunsenite and maghemite, were synthesized using a rapid and a facile combustion technique. A single-phase cubic spinel structure was obtained from X-ray diffraction analyses (XRD) for AgNPs accompanied by a small amount of impurities AgNPs–hematite–maghemite (Ag–HM) and AgNPs–hematite–bunsenite–maghemite (Ag–HBM). Resulting from the field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) analyses, the formation of nanoparticle size was clarified with agglomeration. As a result from the magnetic measurements, the saturation magnetization (Ms) of three impurities, accompanied by AgNPs (Ag–HBM), was larger by 6.02-fold than that of two impurities accompanied by AgNPs (Ag–HM). On the contrary, Ag–HM was smaller by 2.6-fold than that of Ag–HBM. During an antimicrobial study, Ag–HBM showed stronger antibacterial activities than that of Ag–HM. Moreover, Ag–HBM showed strong activities against Candida albicans yeast; however, Ag–HM had no activity against the tested fungi. Thus, the dramatic recommendation of Ag–HBM nanoparticles could be used as an effective antibacterial and antifungal nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.J.B. Pinto, P.A.A.P. Marques, C.P. Neto, T. Trindade, S. Daina, P. Sadocco, Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater. 5, 2279–2289 (2009)

    Article  Google Scholar 

  2. A.A. El-Bassuony, Effect of Al addition on structural, magnetic, and antimicrobial properties of Ag nanoparticles for biomedical applications. JOM (2019). https://doi.org/10.1007/s11837-019-03784-2

    Article  Google Scholar 

  3. X.Q. Fang, G.X. Bai, Preparation and service performance characterization of Ni/PMN-PT: effect of preparation temperature. J. Alloy. Compd. 735(25), 1131–1136 (2018)

    Article  Google Scholar 

  4. C.S. Zhu, X.Q. Fang, J.X. Liu, H.Y. Li, Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. Eur. J. Mech. A/Sol. 66, 423–432 (2017)

    Article  MathSciNet  Google Scholar 

  5. A.A. El-Bassuony, Influence of high annealing temperature on structural, magnetic and antimicrobial activity of silver chromite nanoparticles for biomedical applications. J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01306-w

    Article  Google Scholar 

  6. X.Q. Fang, C.S. Zhu, J.X. Liu, Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys. B Phys. Cond. Matter. 529, 41–56 (2018)

    Article  ADS  Google Scholar 

  7. M.M. da Silva Paula, C.V. Franco, B.M. Cesar, L. Rodrigues, T. Barichello, G.D. Savi, L.F. Bellato, M.A. Fiori, L. da Silva, Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater. Sci. Eng. 29, 647–650 (2009)

    Article  Google Scholar 

  8. F. Xue, Z. Liu, Y. Su, K. Varahramyan, Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors. Micro-electr. Eng. 83, 298 (2006)

    Article  Google Scholar 

  9. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, E.J.W. List, Direct inkjet printing of Ag–Cu nanoparticles and Ag precursor based electronics for OFET application. Adv. Funct. Mater. 17, 3111 (2007)

    Article  Google Scholar 

  10. D.K. Petrov, L.K. Eibaum, J.Z. Sun, C. Feild, P.R. Duncombe, Appl. Phys. Lett. 75, 995 (1999)

    Article  ADS  Google Scholar 

  11. Q. Jiang, J. Yang, C. Nan, Ferroelectrics 489, 60–64 (2015)

    Article  Google Scholar 

  12. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, 13 (2003). https://doi.org/10.1088/0022-3727/36/13/201

    Article  Google Scholar 

  13. A.E.A. Mohamed, A.M. Mohamed, A. El-Shafaie, H.F. Mohamed, A.K. Diab, A.M. Ahmed, Effect of NiO impurity on the magneto-transport properties of the La0.7Ba0.3MnO3 granular manganite. Chem. Phys. Lett. 713, 272–276 (2018)

    Article  ADS  Google Scholar 

  14. A.A.H. El-Bassuony, H.K. Abdelsalam, Fascinating study of the physical properties of a novel nanometric delafossite for biomedical applications. J. Miner. Metals Mater. Soc. (2019). https://doi.org/10.1007/s11837-019-03415-w

    Article  Google Scholar 

  15. R.W. Cheary, A. Coelho, A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25(2), 109–121 (1992)

    Article  Google Scholar 

  16. A.J.C. Wilson, Mathematical Theory of X-ray Powder Diffractometry (Centrex Publishing Company, Eindhoven, 1993)

    Google Scholar 

  17. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), p. 992

    Google Scholar 

  18. A.W. Bauer, W.M. Kirby, C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)

    Article  Google Scholar 

  19. A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, characterization and antimicrobial activity of AgFeO2 delafossite. J. Mater. Sci. Mater. Electron. 29, 11699–11711 (2018). https://doi.org/10.1007/s10854-018-9268-9

    Article  Google Scholar 

  20. C.O. Ehi-Eromosele, B.I. Ita, E.E.J. Iweala, Low-temperature combustion synthesis of cobalt magnesium ferrite magnetic nanoparticles: effects of fuel-to-oxidizer ratio and sintering temperature. J. Sol-Gel. Sci. Technol. 76, 298 (2015). https://doi.org/10.1007/s10971-015-3777-2

    Article  Google Scholar 

  21. A.A. El-Bassuony, Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci. Mater. Electron. 28, 14489–14498 (2017). https://doi.org/10.1007/s10854-017-7312-9

    Article  Google Scholar 

  22. H.K. Abdelsalam, Enhancing the structural and spectroscopic properties of Cr3+ ion-doped Ni/Cd/Zn nanoferrite to be applied to industrial applications. J. Supercond. Novel. Magn. (2018). https://doi.org/10.1007/s10948-018-4689-5

    Article  Google Scholar 

  23. A.A. El-Bassuony, A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-017-4543-1

    Article  Google Scholar 

  24. M.H. Maklad, N.M. Shash, H.K. Abdelsalam, Structural and magnetic properties of nanograined Ni0.7yZn0.3 CayFe2O4 spinels structural and magnetic properties of nanograined. Eur. Phys. J. Appl. Phys. 66, 30402 (2014). https://doi.org/10.1051/epjap/2014130573

    Article  Google Scholar 

  25. I.N. Leontyev, A.B. Kuriganova, N.G. Leontyev, L. Hennet, A. Rakhmatullin, N.V. Smirnova, V. Dmitriev, Size dependence of the lattice parameter of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations. RSC Adv. (2010). https://doi.org/10.1039/c4ra04809a

    Article  Google Scholar 

  26. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  ADS  Google Scholar 

  27. B.K. Labde, M.C. Sable, N.R. Shamkuwar, Structural and infra-red studies of Ni1+xPbxFe22xO4 system. Mater. Lett. 57(11), 1651–1655 (2003)

    Article  Google Scholar 

  28. X.D. Ma, H.W. Sun, H. He, M.H. Zheng, Competitive reaction during decomposition of hexachlorobenzene over ultrafine Ca–Fe composite oxide catalyst. Catal. Lett. 119(1–2), 142–147 (2017)

    Google Scholar 

  29. A.A.H. El-Bassuony, H.K. Abdelsalam, Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726(2017), 1106–1118 (2017). https://doi.org/10.1016/j.jallcom.2017.08.087

    Article  Google Scholar 

  30. A.A.H. El-Bassuony, H.K. Abdelsalam, Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J. Mater. Sci. Mater. Electron. 29, 5401–5412 (2018). https://doi.org/10.1007/s10854-017-8506-x

    Article  Google Scholar 

  31. C.T. Rueden, J. Schindelin, M.C. Hiner et al., ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18, 529 (2017). https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  32. P. Magudapatty, P. Gangopadhyayrans, B.K. Panigrahi, K.G.M. Nair, S. Dhara, Phys. B 299, 142 (2001)

    Article  ADS  Google Scholar 

  33. A.A.H. El-Bassuony, H.K. Abdelsalam, Giant exchange bias of hysteresis loops on Cr3+-doped Ag nanoparticles. J. Supercond. Nov. Magn. 31, 1539–1544 (2018). https://doi.org/10.1007/s10948-017-4340-x

    Article  Google Scholar 

  34. A.M. Prodan, S.L. Iconaru, C.M. Chifiriuc, C. Bleotu, C.S. Ciobanu, M.M. Heino, S. Sizaret, D. Predoi, Magnetic properties and biological activity evaluation of iron oxide nanoparticles. J. Nanomater. 2013, 893970 (2013). https://doi.org/10.1155/2013/893970

    Article  Google Scholar 

  35. A.A.H. El-Bassuony, H.K. Abdelsalam, Correlation of heat treatment and the impurities accompanying Ag nanoparticles. Eur. Phys. J. Plus. (2020). https://doi.org/10.1140/epjp/s13360-019-00025-y

    Article  Google Scholar 

  36. A.A.H. El-Bassuony, Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J. Mater. Sci. Mater. Electron. 29, 3259–3269 (2018). https://doi.org/10.1007/s10854-017-8261-z

    Article  Google Scholar 

  37. P.T. Barton, R. Seshadri, A. Knoller, M.J. Rosseinsky, Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1x (CuCrO2)x. J. Phys. Condens. Matter 24, 16002 (2012). https://doi.org/10.1088/0953-8984/24/1/016002

    Article  Google Scholar 

  38. T.K. Rao, C.J. Rao, I.V.K. Viswanath, Y.L.N. Murthy, Anti microbial activity of nanosilverferrite composite. IJIRSET (2015). https://doi.org/10.15680/IJIRSET.2015.0409092

    Article  Google Scholar 

  39. M. Faried, K. Shameli, M. Miyake, A. Hajalilou, A. Zamanian, Z. Zakaria, E. Abouzari-lotf, H. Hara, N.B.B.A. Khairudin, M.F.B. Nordin, J. Nanomater. (2016). https://doi.org/10.1155/2016/4941231

    Article  Google Scholar 

  40. A.A.H. El-Bassuony, H.K. Abdelsalam, Attractive improvement in structural, magnetic, optical, and antimicrobial activity of silver delafossite by Fe/Cr doping. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4627-6

    Article  Google Scholar 

  41. L. Joudah, S. Moghaddas, R.N. Bose, DNA oxidation by peroxo-chromium(v) species: oxidation of guanosine to guani-dinohydantoin. Chem. Commun. 16, 1742–1743 (2002)

    Article  Google Scholar 

  42. P.L. Páez, C.M. Bazán, M.E. Bongiovanni, J. Toneatto, I. Albesa, M.C. Becerra, G.A. Argüello, Oxidative stress and antimicrobial activity of chromium (III) and ruthenium (II) complexes on Staphylococcus aureus and Escherichia coli Hindawi Publishing Corporation. BioMed. Res. Int. (2013). https://doi.org/10.1155/2013/906912

    Article  Google Scholar 

  43. A.A.H. El-Bassuony, H.K. Abdelsalam, Tailoring the structural, magnetic and antimicrobial activity of AgCrO2 delafossite via high annealing temperature. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08207-7

    Article  Google Scholar 

  44. G. Nangmenyi, X. Li, S. Mehrabi, E. Mintz, J. Economy, Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water. Mater. Lett. 65, 1191–1193 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Abdelsalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bassuony, A.A.H., Abdelsalam, H.K. Impacts of hematite, bunsenite and maghemite impurities on the physical and antimicrobial properties of silver nanoparticles. Eur. Phys. J. Plus 135, 64 (2020). https://doi.org/10.1140/epjp/s13360-020-00139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00139-8

Navigation