Skip to main content
Log in

Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

\(\hbox {Ni}_{ 50-x}\hbox {Ti}_{50}\hbox {Cu}_x\) (at.%) \(x=14, 17, 20)\) shape memory alloys were produced using the arc-melting technique. The replacing Cu element into Ti-rich NiTi alloy has been investigated through characterization techniques, including differential scanning calorimetry (DSC), X-ray diffraction (XRD), optical and SEM microscopy. Additionally, various phases and precipitations were determined using EDS measurement. The manufactured alloys showed a single-step austenite \(\leftrightarrow \) martensite phase transformation (B2 \(\leftrightarrow \)\(\hbox {B19}^{\prime }\) ). The DSC results showed that the samples have comparable high-temperature hysteresis in the range of about (30–50 K). The main detected XRD peaks are the monoclinic martensite phase with cubic austenite phases, which their intensities were decreased by increasing copper addition into the alloy. The microhardness results revealed that the second phase of the alloys has higher hardness compared to the matrix phase. It was concluded that NiTiCu can be used in low-temperature shape memory alloys as they illustrate transformation temperature below \(100\,^{\circ }\hbox {C}\)

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.N. Qader, M. Kök, F. Dagdelen, Y. Aydogdu, A review of smart materials: researches and applications. El-Cezerî J. Sci. Eng. 6(3), 755–788 (2019). https://doi.org/10.31202/ecjse.562177

    Article  Google Scholar 

  2. S.S. Mohammed, K. Mediha, I.N. Qader, F. Dagdelen, The developments of piezoelectric materials and shape memory alloys in robotic actuator systems. Avrupa Bilim ve Teknoloji Dergisi 17, 1014–1030 (2019). https://doi.org/10.31590/ejosat.653751

    Article  Google Scholar 

  3. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog. Mater. Sci. 54(3), 397–425 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  Google Scholar 

  4. S. Shabalovskaya, J. Anderegg, J. Van Humbeeck, Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 4(3), 447–467 (2008). https://doi.org/10.1016/j.actbio.2008.01.013

    Article  Google Scholar 

  5. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: a review. Prog. Mater Sci 57(5), 911–946 (2012). https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  Google Scholar 

  6. D.A. Miller, D.C. Lagoudas, Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Mater. Sci. Eng. A 308(1–2), 161–175 (2001). https://doi.org/10.1016/S0921-5093(00)01982-1

    Article  Google Scholar 

  7. C. Tatar, Z. Yildirim, Phase transformation kinetics and microstructure of NiTi shape memory alloy: effect of hydrostatic pressure. Bull Mater. Sci 40(4), 799–803 (2017). https://doi.org/10.1007/s12034-017-1413-1

    Article  Google Scholar 

  8. T. Goryczka, J. Van Humbeeck, NiTiCu shape memory alloy produced by powder technology. J. Alloys Compd. 456(1–2), 194–200 (2008). https://doi.org/10.1016/j.jallcom.2007.02.094

    Article  Google Scholar 

  9. E. Ercan, F. Dagdelen, I. Qader, Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. J Therm. Anal. Calorim. 139(1), 29–36 (2020). https://doi.org/10.1016/j.jallcom.2007.02.094

    Article  Google Scholar 

  10. F. Dagdelen, M. Aldalawi, M. Kok, I. Qader, Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. Euro. Phys J. Plus 134(2), 66 (2019). https://doi.org/10.1140/epjp/i2019-12479-3

    Article  Google Scholar 

  11. S.N. Saud, E. Hamzah, T. Abubakar, M. Zamri, M. Tanemura, Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu-Al-Ni shape memory alloys. J. Therm. Anal. Calorim. 118(1), 111–122 (2014). https://doi.org/10.1007/s10973-014-3953-6

    Article  Google Scholar 

  12. J.-Y. Jang, S.-J. Chun, N.-S. Kim, J.-W. Cho, J.-H. Kim, J.-T. Yeom, J.-I. Kim, T.-H. Nam, Martensitic transformation behavior in Ti-Ni-X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys. Mater. Res. Bull. 48(12), 5064–5069 (2013). https://doi.org/10.1016/j.materresbull.2013.05.004

    Article  Google Scholar 

  13. X. He, L. Rong, Effect of deformation on the stress-induced martensitic transformation in (Ni 47 Ti 44) 100–x Nb x shape memory alloys with wide hysteresis. Met. Mater. Int. 12(4), 279–288 (2006). https://doi.org/10.1007/BF03027544

    Article  Google Scholar 

  14. T. Fukuda, T. Kakeshita, M. Kitayama, T. Saburi, Effect of aging on martensitic transformation in a shape memory Ti-40.5 Ni-10Cu alloy. J. Phys. IV, 5(C8), C8-717–C8-722 (1995). https://doi.org/10.1051/jp4/199558717

    Google Scholar 

  15. T.H. Nam, T. Saburi, Y. Nakata, K.i. Shimizu, Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater. Trans. JIM 31(12), 1050–1056 (1990). https://doi.org/10.2320/matertrans1989.31.1050

  16. F. Gil, E. Solano, J. Pena, E. Engel, A. Mendoza, J. Planell, Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J. Mater. Sci. Mater. Med. 15(11), 1181–1185 (2004). https://doi.org/10.1007/s10856-004-5953-8

    Article  Google Scholar 

  17. H. Sehitoglu, I. Karaman, X. Zhang, H. Kim, Y. Chumlyakov, I. Kireeva, H.J. Maier, Deformation of NiTiCu shape memory single crystals in compression. Metall. Mater. Trans. A 32(3), 477–489 (2001). https://doi.org/10.1007/s11661-001-0064-3

    Article  Google Scholar 

  18. J. Uchil, K. Mahesh, K.G. Kumara, Dilatometric study of martensitic transformation in NiTiCu and NiTi shape memory alloys. J. Mater Sci 36(24), 5823–5827 (2001). https://doi.org/10.1023/A:1012908222409

    Article  ADS  Google Scholar 

  19. R. Bricknell, K. Melton, O. Mercier, The structure of NiTiCu shape memory alloys. Metall. Trans. A 10(6), 693–697 (1979). https://doi.org/10.1007/BF02658390

    Article  Google Scholar 

  20. A. Biscarini, B. Coluzzi, G. Mazzolai, A. Tuissi, F. Mazzolai, Extraordinary high damping of hydrogendoped NiTi and NiTiCu shape memory alloys. J. Alloys Compd. 355(1–2), 52–57 (2003). https://doi.org/10.1016/S0925-8388(03)00267-6

    Article  Google Scholar 

  21. T. Goryczka, J. Van Humbeeck, Characterization of a NiTiCu shape memory alloy produced by powder technology. J Achiev. Mater. Manuf. Eng. 17(1–2), 65–68 (2006)

    Google Scholar 

  22. S. Shiva, I. Palani, S. Mishra, C. Paul, L. Kukreja, Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing. Opt. Laser Technol. 69, 44–51 (2015). https://doi.org/10.1016/j.optlastec.2014.12.014

    Article  ADS  Google Scholar 

  23. M. Kök, I.N. Qader, S.S. Mohammed, E. ÖNER, F. Dağdelen, Y. Aydogdu, Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Mater. Res. Express 7, 015702 (2020). https://doi.org/10.1088/2053-1591/ab5bef

    Article  ADS  Google Scholar 

  24. T. Elrasasi, M. Dobróka, L. Daróczi, D. Beke, Effect of thermal and mechanical cycling on the elastic and dissipative energy in CuAl (11.5 wt%) Ni (5.0 wt%) shape memory alloy. J Alloys Compd. 577, S517–S520 (2013). https://doi.org/10.1016/j.jallcom.2012.06.108

    Article  Google Scholar 

  25. S. Ozgen, C. Tatar, Thermoelastic transition kinetics of a gamma irradiated CuZnAl shape memory alloy. Met. Mater. Int 18(6), 909–916 (2012). https://doi.org/10.1007/s12540-012-6001-8

    Article  Google Scholar 

  26. J. Ortin, A. Planes, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 36(8), 1873–1889 (1988). https://doi.org/10.1016/0001-6160(88)90291-X

    Article  Google Scholar 

  27. M. Kök, H.S.A. Zardawi, I.N. Qader, M.S. Kanca, The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. Euro. Phys J. Plus 134(5), 197 (2019). https://doi.org/10.1140/epjp/i2019-12570-9

    Article  Google Scholar 

  28. F. Dagdelen, M. Kok, I. Qader, Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Met. Mater. Int. 25(6), 1420–1427 (2019). https://doi.org/10.1007/s12540-019-00298-z

    Article  Google Scholar 

  29. F. Dagdelen, T. Gokhan, A. Aydogdu, Y. Aydogdu, O. Adigüzel, Effects of thermal treatments on transformation behaviour in shape memory Cu-Al-Ni alloys. Mater. Lett. 57(5–6), 1079–1085 (2003). https://doi.org/10.1016/S0167-577X(02)00934-5

    Article  Google Scholar 

  30. F. Dagdelen, E. Balci, I.N. Qader, E. Ozen, M. Kok, M.S. Kanca, S.S. Abdullah, S.S. Mohammed, Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM (2020). https://doi.org/10.1007/s11837-020-04026-6

    Article  Google Scholar 

  31. M. Kok, A.O.A. Al-Jaf, Z.D. Çirak, I.N. Qader, E. Özen, Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08788-3

    Article  Google Scholar 

  32. I.N. Qader, M. Kök, F. Dagdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Phys. B. Condens. Matter 553, 1–5 (2019). https://doi.org/10.1016/j.physb.2018.10.021

    Article  ADS  Google Scholar 

  33. C. Tatar, Z. Yildirim, O. Kaygili, Effect of hydrostatic pressure on thermodynamic properties of NiTi shape memory alloy. Arch. Metall. Mater 62(2), 799–806 (2017). https://doi.org/10.1515/amm-2017-0119

    Article  Google Scholar 

  34. M. Ghadimi, A. Shokuhfar, A. Zolriasatein, H.R. Rostami, Morphological and structural evaluation of nanocrystalline NiTiCu shape memory alloy prepared via mechanical alloying and annealing. Mater. Lett. 90, 30–33 (2013). https://doi.org/10.1016/j.matlet.2012.09.008

    Article  Google Scholar 

  35. M. Valeanu, M. Lucaci, A. Crisan, M. Sofronie, L. Leonat, V. Kuncser, Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy. J. Alloys Compd. 509(13), 4495–4498 (2011). https://doi.org/10.1016/j.jallcom.2011.01.154

    Article  Google Scholar 

  36. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  MATH  Google Scholar 

  37. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511–678 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Management Unit of the Scientific Research Projects of Firat University (FUBAP) (Project Numbers: FF.19.01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz Tatar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatar, C., Acar, R. & Qader, I.N. Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. Eur. Phys. J. Plus 135, 311 (2020). https://doi.org/10.1140/epjp/s13360-020-00288-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00288-w

Navigation