Skip to main content
Log in

Fractional modeling and synchronization of ferrofluid on free convection flow with magnetolysis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The dispersion of ferromagnetism in free convection flow can lead the magnetization process in reduction due to misalignments of the magnetic domains. In this context, an intensive viscoelastic model is subjected to the magnetization process through non-integer-order differentiation based on singular kernel. The geometry of the problem is tackled for vertical tunnel on the basis of width d saturated by porous medium in which oscillating pressure gradient is invoked. The non-fractional governing equations have been treated for dimensionality of homogeneity. The fractionalized solutions for dimensionless velocity, temperature and Nusselt number have been investigated by employing the techniques of Laplace transforms with its inversion. The magnetized mathematical model has been disseminated for the sake of physical parameters subject the variants in fractional parameter. Finally, our results have been emphasized for rheological parameter so-called Peclet number, Reynolds number, magnetic parameter, Grashof number, Prandtl number on the variants of fractional time Caputo parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Sajid, T. Hayat, S. Asgharm, Non similar analytic solution for MHD flow and heat transfer in a third order fluid over a stretching sheet. Int. J. Heat Mass Transf. 50, 1723–1736 (2007)

    Article  Google Scholar 

  2. T. Hayat, S. Noreen, M. Sajid, Heat transfer analysis of the steady flow of a fourth grade fluid. Int. J. Therm. Sci. 5, 591–599 (2008)

    Article  Google Scholar 

  3. A.M. Saddiqui, A. Zeb, Q.K. Ghori, A.M. Benharbit, Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates. Chaos Solitons Fractals 36, 182–192 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Hayat, T. Javed, Z. Abbas, Slip flow and heat transfer flow of a second grade fluid past a stretching sheet through a porous space. Int. J. Heat Mass Transf. 54, 4528–4534 (2008)

    Article  Google Scholar 

  5. M.S. Abel, E. Sanjayan, M.M. Nandeppanavar, Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and ohmic dissipations. Commun. Nonlinear Sci. Numer. Simul. 13, 1808–1821 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Qasim, R. Samia, A.U. Awan, K.A. Abro, Thermal investigation for electrified convection flow of Newtonian fluid subjected to damped thermal flux on a permeable medium. Phys. Scr. (2020). https://doi.org/10.1088/1402-4896/abbc2e

    Article  Google Scholar 

  7. A.A. Kashif, D. Bhagwan, A scientific report of non-singular techniques on microring resonators: an application to optical technology. Optik 224, 165696 (2020). https://doi.org/10.1016/j.ijleo.2020.165696

    Article  Google Scholar 

  8. T. Hayat, M. Awais, M. Qasim, A.A. Hendi, Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid. Int. J. Heat Mass Transf. 54, 3777–3782 (2011)

    Article  Google Scholar 

  9. T. Hayat, S.A. Shehzad, M. Qasim, S.Obaidat, Study flow of Maxwell fluid with convected boundary conditions, Z.Naturforch, 66a, 417-422 (2011)

  10. O.D. Makinde, P.Y. Mhone, Heat transfer to MHD oscillatory flow in a channel filled with porous medium. Rom. J. Phys. 50, 931–938 (2005)

    Google Scholar 

  11. K. Sadeghy, H. Hajibeygi, S.M. Taghavi, Stagnation point flow of upper-convected Maxwell fluid. Int. J. Non-Linear Mech. 41, 1242–1247 (2006)

    Article  ADS  Google Scholar 

  12. T. Hayat, Z. Abbas, M. Sajid, Series solution for the upper convected Maxwell fluid over a porous stretching plate. Phys. Lett. A 358, 396–403 (2006)

    Article  ADS  Google Scholar 

  13. T. Hayat, C. Fetecau, M. Sajid, On MHD transient flow of a Maxwell fluid in a porous medium and rotating frame. Phys. Lett. A 372, 1639–1644 (2008)

    Article  ADS  Google Scholar 

  14. T. Hayat, Z. Abbas, M. Sajid, MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos Solitons Fractals 39, 840–848 (2009)

    Article  ADS  Google Scholar 

  15. M. Kumari, G. Nath, Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field. Int. J. Non-Linear Mech. 44, 1048–1055 (2009)

    Article  ADS  Google Scholar 

  16. V. Aliakbar, A.A. Pahlavan, K. Sadeghy, The influence of thermal radiation on MHD flow of Maxwellian fluid above stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 14, 779–794 (2009)

    Article  ADS  Google Scholar 

  17. T. Hayat, M. Qasim, Influence of thermal radiation and joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis. Int. J. Heat Mass Transf. 533, 4780–4788 (2010)

    Article  Google Scholar 

  18. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Method of Their Solution and Some of Their Applications (Academic Press, London, 1998)

    MATH  Google Scholar 

  19. V. Kulish, J.L. Lage, Application of fractional calculus to fluid mechanics. J. Fluids Eng. 3, 803–806 (2002)

    Article  Google Scholar 

  20. W. Tan, M. Xu, Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin./Lixue Xuebao 18, 342–349 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Tripathi, S.K. Panday, S. Das, Peristaltic flow of a viscoelastic fluid with a fractional Maxwell fluid through a channel. Appl. Math. Comput. 215, 3645–3654 (2010)

    MathSciNet  MATH  Google Scholar 

  22. G. Rasool, T. Zhang, A. Shafiq, Marangoni effect in second grade forced convective flow of water based nanofluid. J. Adv. Nanotechnol. 1, 50–61 (2019)

    Article  Google Scholar 

  23. A. Shafiq, Z. Hammouch, A. Turab, Impact of radiation in a stagnation point flow of Walters’ B fluid towards a Riga plate. Therm. Sci. Eng. Prog. 6, 27–33 (2018)

    Article  Google Scholar 

  24. K.A. Abro, Role of fractal-fractional derivative on ferromagnetic fluid via fractal Laplace transform: a first problem via fractal-fractional differential operator. Eur. J. Mech. B Fluids 85, 76–81 (2021). https://doi.org/10.1016/j.euromechflu.2020.09.002

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Yoku, H. Durur, K.A. Abro, D. Kaya, Role of Gilson–Pickering equation for the different types of soliton solutions: a nonlinear analysis. Eur. Phys. J. Plus 135, 657 (2020). https://doi.org/10.1140/epjp/s13360-020-00646-8

    Article  Google Scholar 

  26. M. Caputo, Elasticita e Dissipazione (Zani-Chelli, Bologna, 1969)

    Google Scholar 

  27. L. Debnath, Fractional integrals and fractional differential equations in fluid mechanics. Fract. Calc. Appl. Anal. 6, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  28. G. Rasool, T. Zhang, A. Shafiq, H. Durur, Influence of chemical reaction on Marangoni convective flow of nanoliquid in the presence of Lorentz forces and thermal radiation. A numerical investigation. J. Adv. Nanotechnol. 1, 32–49 (2019)

    Article  Google Scholar 

  29. K.A. Abro, A. Atangana, Porous effects on the fractional modeling of magnetohydrodynamic pulsatile flow: an analytic study via strong kernels. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10027-z

    Article  Google Scholar 

  30. K.A. Abro, J.F. Gomez-Aguilar, Role of Fourier sine transform on the dynamical model of tensioned carbon nanotubes with fractional operator. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6655

    Article  Google Scholar 

  31. K.A. Abro, A. Atangana, A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations. The European Physical Journal Plus 135, 226–242 (2020). https://doi.org/10.1140/epjp/s13360-020-00136-x

    Article  ADS  Google Scholar 

  32. K.A. Abro, S. Ambreen, A. Atangana, Thermal stratification of rotational second-grade fluid through fractional differential operators. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09312-8

    Article  Google Scholar 

  33. K.A. Abro, A fractional and analytic investigation of thermo-diffusion process on free convection flow: an application to surface modification technology. Eur. Phys. J. Plus 135(1), 31–45 (2019). https://doi.org/10.1140/epjp/s13360-019-00046-7

    Article  Google Scholar 

  34. K.A. Abro, I. Khan, J.F. Gomez-Aguilar, Heat transfer in magnetohydrodynamic free convection flow of generalized ferrofluid with magnetite nanoparticles. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-019-08992-1

    Article  Google Scholar 

  35. K.A. Abro, J.F. Gomez-Aguilar, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function. Eur. Phys. J. Plus 134, 101–113 (2019). https://doi.org/10.1140/epjp/i2019-12507-4

    Article  Google Scholar 

  36. K.A. Abro, A. Atangana, A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. Mathematical Methods in the Applied Sciences 1–11 (2020). https://doi.org/10.1002/mma.6638

  37. K.A. Abro, A. Atangana, Mathematical analysis of memristor through fractal-fractional differential operators: a numerical study. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6378

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Yang, K.Q. Zhu, start up flow of a viscoelastic fluid in a pipe with a fractional Maxwell model. Comput. Math. Appl. 60, 2231–2238 (2010)

    Article  MathSciNet  Google Scholar 

  39. C. Fetecau, C. Fetecau, M. Jamil, A. Mahmood, Flow of fractional Maxwell fluid between coaxial cylinders. Arch. Appl. Mech. 81, 1153–1163 (2011)

    Article  ADS  Google Scholar 

  40. M. Jamil, A. Rauf, A.A. Zafar, N.A. Khan, New exact analytical solutions for Stokes’ first problem of Maxwell fluid with fractional derivative approach. Comput. Math. Appl. 62, 1013–1023 (2011)

    Article  MathSciNet  Google Scholar 

  41. D. Vieru, C. Fetecau, C. Fetecau, Time fractional free convection flow near a vertical plate with Newtonian heating and mass diffusion. Therm. Sci. 19, 85–98 (2015)

    Article  Google Scholar 

  42. N. Shahid, A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate. Springer Plus 4, 640–661 (2015)

    Article  Google Scholar 

  43. Q. Rubab, I.A. Mirza, Z.A. Qureshi, Analytical solution to the fractional advection–diffusion equation with time-dependent pulses on the boundary. AIP Adv. 6, 075318 (2016)

    Article  ADS  Google Scholar 

  44. D. Vieru, I. Khan, N.A. Shah, Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate. Eur. Phys. J. Plus 131, 181–193 (2016)

    Article  Google Scholar 

  45. G. Davis, M. Kohandel, S. Sivaloganathan, G. Tenti, The constitutive properties of the brain paraenchyma: Part 2. Fractional derivative approach. Biomech. Model. Mechanobiol. 28, 455–459 (2006)

    Google Scholar 

  46. D. Craiem, F. Rojo, J. Atienza, G. Guinea, R. Armentano, Fractional calculus applied to model arterial viscoelasticity. Latin Am. Appl. Res. 38, 141–145 (2008)

    Google Scholar 

  47. F. Santamaria, S. Wils, E. de Schutter, G.J. Augustine, Anomalous diffusion in purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006)

    Article  Google Scholar 

  48. H.G. Sun, W. Chen, Y.Q. Chen, Variable order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  49. G. Rasool, A. Shafiq, D. Baleanu, Consequences of Soret–Dufour effects, thermal radiation, and binary chemical reaction on Darcy–Forchheimer flow of nanofluids. Symmetry 12(9), 1421 (2020)

    Article  Google Scholar 

  50. A. Shafiq, G. Rasool, C.M. Khalique, Significance of thermal slip and convective boundary conditions in three dimensional rotating Darcy–Forchheimer nanofluid flow. Symmetry 12(5), 741 (2020)

    Article  Google Scholar 

  51. A. Shafiq, G. Rasool, C.M. Khalique, M. Aslam, Second grade bioconvective nanofluid flow with Buoyancy effect and chemical reaction. Symmetry 12(4), 621 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Appendix

Appendix

$$\begin{aligned} F(a_{0},s,b_{0},c_{0})= & {} \frac{\sinh [a_{0}\sqrt{s+b_{0}}]}{s\sinh [c_{0}\sqrt{s+b_{0}}]}\nonumber \\= & {} \sum _{k=0}^{\infty }\Bigg [\frac{1}{q} e^{-[(2k+1)c_{0}-a_{0}]\sqrt{s+b_{0}}}-\frac{1}{q}e^{-[(2k+1)c_{0}+a_{0}]\sqrt{s+b_{0}}}\Bigg ],\nonumber \\ f(a_{0},t,b_{0},c_{0})= & {} L^{-1}\left\{ F(a_{0},s,b_{0},c_{0})\right\} \nonumber \\= & {} \displaystyle \sum _{k=0}^{\infty }[\psi _{k}(a_{0},t,b_{0},c_{0})- \psi _{k}(-a_{0},t,b_{0},c_{0})], \end{aligned}$$
(A1)
$$\begin{aligned} \displaystyle \psi _{k}(a_{0},t,b_{0},c_{0})= & {} \frac{1}{2}\Big [e^{-[(2k+1)c_{0}-a_{0}]\sqrt{b_{0}}}erfc\left( \frac{(2k+1)c_{0}-a_{0}}{2\sqrt{t}}-\sqrt{b_{0}t}\right) \nonumber \\&+e^{[(2k+1)c_{0}-a_{0}]\sqrt{b_{0}}}\nonumber \\&\quad \times erfc\Big (\frac{(2k+1)c_{0}-a_{0}}{2\sqrt{t}} +\sqrt{b_{0}t}\Big )\Big ],\nonumber \\ H(a_{0},s,b_{0},c_{0})= & {} \displaystyle \frac{\sinh [a_{0}\sqrt{s^{\alpha }+b_{0}}]}{s^{\alpha }\sinh [c_{0}\sqrt{s^{\alpha }+b_{0}}]}= F(a_{0},s^{\alpha },b_{0},c_{0}),\nonumber \\ h(a_{0},t,b_{0},c_{0})= & {} {\left\{ \begin{array}{ll} \displaystyle \int _0^\infty {t^{-1}}f(a_{0},x,b_{0},c_{0})\phi (0,-\alpha ,-xt^{-\alpha })\hbox {d}x,\, 0<\alpha <1\\ f(a_{0},t,b_{0},c_{0}),\quad \alpha =1, \end{array}\right. } \nonumber \\= & {} L^{-1}\left\{ H(a_{0},s,b_{0},c_{0})\right\} , \end{aligned}$$
(A2)
$$\begin{aligned} U(s)= & {} \frac{1}{s}e^{-a_{0}{s^{\sigma }}},a_{0}\geqslant 0,\quad 0<\sigma <1,\nonumber \\ u(t)= & {} L^{-1}\left\{ U(s)\right\} (t)=\phi (1,-\sigma ,-a_{0}t^{-\sigma }),\nonumber \\ u(0)= & {} \mathop {\hbox {lim}}\limits _{t\rightarrow 0^{+}}u(t)=\mathop {\hbox {lim}}\limits _{s\rightarrow \infty }sU(s)= \mathop {\hbox {lim}}\limits _{s\rightarrow \infty }s\frac{1}{s}e^{-a_{0}s^{\sigma }}=0,\nonumber \\ L\left\{ u^{\prime }(t)\right\}= & {} sU(s)-U(0)=sU(s)=e^{-a_{0}s^{\sigma }}, \nonumber \\ u^{\prime }(t)= & {} t^{-1}\phi (0,-\sigma ,-a_{0}t^{-\sigma }). \end{aligned}$$
(A3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, A.U., Riaz, S., Sattar, S. et al. Fractional modeling and synchronization of ferrofluid on free convection flow with magnetolysis. Eur. Phys. J. Plus 135, 841 (2020). https://doi.org/10.1140/epjp/s13360-020-00852-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00852-4

Navigation