Skip to main content

Advertisement

Log in

Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The developed NiTi-based shape memory alloys are the most widely used materials in commercial applications due to shape memory effect and superelasticity. In this study, it is aimed to investigate the thermal, microstructural, and corrosion behavior of NiTiNb SMA by alloying with different composition of vanadium. The alloys with nominal composition Ni27Ti50Nb23-xVx (x = 1, 2, 5) were manufactured by the arc-melting device under an argon gas atmosphere. The DSC measurements showed that the alloys are low-temperature shape memory alloys and the changes in the composition have not made a significant effect on the phase transformation temperatures. According to thermodynamics parameters, such as enthalpy and entropy changes, it is found that the alloy with 2 (at.%) of vanadium has more stability compared with the other SMAs. The microstructural analysis reveals that the Ni27Ti50Nb21V2 (at.%) alloy has a different dendritic microstructure, whereby, the mapping shows that the dendritic of the alloy almost consists of Nb, while the other alloys Ti are the host element in the dendritic microstructure. It is realized that the manufactured alloys have less biocompatibility since they have shown a high corrosion rate compared to equiatomic NiTi SMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Ölander, An electrochemical investigation of solid cadmium-gold alloys. J. Am. Chem. Soc. 54(10), 3819–3833 (1932)

    Article  Google Scholar 

  2. I.N. Qader, M. Kök, F. Dağdelen, Y. Aydogdu, A Review of Smart Materials: Researches and Applications. El-Cezerî J. Sci. Eng. 6(3), 755–788 (2019). https://doi.org/10.31202/ecjse.562177

    Article  Google Scholar 

  3. G. Firstov, J. Van Humbeeck, Y.N. Koval, High temperature shape memory alloys problems and prospects. J. Intell. Mater. Syst. Struct. 17(12), 1041–1047 (2006)

    Article  Google Scholar 

  4. K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511–678 (2005)

    Article  Google Scholar 

  5. L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang, Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)

    Article  Google Scholar 

  6. J. Ryhänen, Biocompatibility of nitinol. Minim. Invasive Ther. Allied. Technol. 9(2), 99–105 (2000). https://doi.org/10.3109/13645700009063056

    Article  Google Scholar 

  7. D. Correa, F. Vicente, T. Donato, V. Arana-Chavez, M. Buzalaf, C.R. Grandini, The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications. Mater. Sci. Eng. C 34, 354–359 (2014)

    Article  Google Scholar 

  8. S. Sadrnezhaad, S. Hosseini, Fabrication of porous NiTi-shape memory alloy objects by partially hydrided titanium powder for biomedical applications. Mater. Des. 30(10), 4483–4487 (2009). https://doi.org/10.1016/j.matdes.2009.05.034

    Article  Google Scholar 

  9. L. Petrini, F. Migliavacca, Biomedical applications of shape memory alloys. J. Metall. 20, 11 (2011). https://doi.org/10.1155/2011/501483

    Article  Google Scholar 

  10. S. Degeratu, P. Rotaru, G. Manolea, H.O. Manolea, A. Rotaru, Thermal characteristics of Ni–Ti SMA (shape memory alloy) actuators. J. Therm. Anal. Calorim. 97(2), 695 (2009). https://doi.org/10.1007/s10973-009-0215-0

    Article  Google Scholar 

  11. G. Florian, A.R. Gabor, C.A. Nicolae, A. Rotaru, C.A. Marinescu, G. Iacobescu, N. Stănică, S. Degeratu, O. Gîngu, P. Rotaru, Physical and thermophysical properties of a commercial Ni–Ti shape memory alloy strip. J. Therm. Anal. Calorim. 138(3), 2103–2122 (2019). https://doi.org/10.1007/s10973-019-08615-9

    Article  Google Scholar 

  12. G. Florian, A.R. Gabor, C.A. Nicolae, A. Rotaru, N. Stănică, N.G. Bîzdoacă, P. Rotaru, Thermomechanical, calorimetric and magnetic properties of a Ni–Ti shape-memory alloy wire. J. Therm. Anal. Calorim. 140(2), 527–544 (2020). https://doi.org/10.1007/s10973-019-08869-3

    Article  Google Scholar 

  13. X. Zhou, Y. Chen, Y. Huang, Y. Mao, Y. Yu, Effects of niobium addition on the microstructure and mechanical properties of laser-welded joints of NiTiNb and Ti6Al4V alloys. J. Alloy. Compd. 735, 2616–2624 (2018). https://doi.org/10.1016/j.jallcom.2017.11.307

    Article  Google Scholar 

  14. F. Dagdelen, Y. Aydogdu, Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. J. Therm. Anal. Calorim. 136(2), 637–642 (2019)

    Article  Google Scholar 

  15. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22(11), 1253–1262 (2001)

    Article  Google Scholar 

  16. Y. Guanjun, H. Shiming, Study on the phase equilibria of the Ti–Ni–Nb ternary system at 900 °C. J. Alloy. Compd. 297(1–2), 226–230 (2000)

    Article  Google Scholar 

  17. Y. Chen, H. Jiang, S. Liu, L. Rong, X. Zhao, The effect of Mo additions to high damping Ti–Ni–Nb shape memory alloys. Mater. Sci. Eng. A 512(1–2), 26–31 (2009)

    Article  Google Scholar 

  18. Y.-Q. Zhang, S.-Y. Jiang, Y.-N. Zhao, T. Ming, Influence of cooling rate on phase transformation and microstructure of Ti-50.9% Ni shape memory alloy. Trans. Nonferrous Metals Soc. China 22(11), 2685–2690 (2012)

    Article  Google Scholar 

  19. Q. Chen, B. Andrawes, Cyclic stress–strain behavior of concrete confined with NiTiNb-shape memory alloy spirals. J. Struct. Eng. 143(5), 04017008 (2017). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001728

    Article  Google Scholar 

  20. R. Suhail, J. Chen, G. Amato, D. McCrum, Mechanical behaviour of NiTiNb shape memory alloy wires–strain localisation and effect of strain rate. Mech. Mater. 144, 103346 (2020). https://doi.org/10.1016/j.mechmat.2020.103346

    Article  Google Scholar 

  21. S. Jiang, Z. Mao, Y. Zhang, L. Hu, Mechanisms of nanocrystallization and amorphization of NiTiNb shape memory alloy subjected to severe plastic deformation. Procedia Eng. 207, 1493–1498 (2017). https://doi.org/10.1016/j.proeng.2017.10.1086

    Article  Google Scholar 

  22. F. Dagdelen, E. Balci, I.N. Qader, E. Ozen, M. Kok, M.S. Kanca, S.S. Abdullah, S.S. Mohammed, Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM 72(4), 1664–1672 (2020). https://doi.org/10.1007/s11837-020-04026-6

    Article  ADS  Google Scholar 

  23. M. Kök, A.O.A. Al-Jaf, Z.D. Çirak, I.N. Qader, E. Özen, Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. J. Therm. Anal. Calorim. 139(6), 3405–3413 (2020). https://doi.org/10.1007/s10973-019-08788-3

    Article  Google Scholar 

  24. M. Kök, I.N. Qader, S.S. Mohammed, E. Öner, F. Dağdelen, Y. Aydogdu, Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy. Mater. Res. Express 7(1), 015702 (2019). https://doi.org/10.1088/2053-1591/ab5bef

    Article  ADS  Google Scholar 

  25. E. Acar, M. Kok, I.N. Qader, Exploring surface oxidation behavior of NiTi–V alloys. Eur. Phys. J. Plus 135(1), 58 (2020). https://doi.org/10.1140/epjp/s13360-019-00087-y

    Article  Google Scholar 

  26. G. Firstov, T. Kosorukova, Y.N. Koval, V. Odnosum, High entropy shape memory alloys. Mater. Today Proc. 2, S499–S503 (2015). https://doi.org/10.1016/j.matpr.2015.07.335

    Article  Google Scholar 

  27. C. Tatar, R. Acar, I.N. Qader, Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method. Eur. Phys. J. Plus 135(3), 311 (2020). https://doi.org/10.1140/epjp/s13360-020-00288-w

    Article  Google Scholar 

  28. I.N. Qader, M. Kök, F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Phys. B 553, 1–5 (2019). https://doi.org/10.1016/j.physb.2018.10.021

    Article  ADS  Google Scholar 

  29. M. Kök, H.S.A. Zardawi, I.N. Qader, M.S. Kanca, The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. Eur. Phys. J. Plus 134(5), 197 (2019). https://doi.org/10.1140/epjp/i2019-12570-9

    Article  Google Scholar 

  30. S.S. Mohammed, M. Kok, I.N. Qader, M.S. Kanca, E. Ercan, F. Dağdelen, Y. Aydoğdu, Influence of Ta additive into Cu84−xAl13Ni3 (wt%) shape memory alloy produced by induction melting. Iran J. Sci. Technol. A 44(4), 1167–1175 (2020). https://doi.org/10.1007/s40995-020-00909-0

    Article  Google Scholar 

  31. E. Ercan, F. Dagdelen, I.N. Qader, Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. J. Therm. Anal. Calorim. 139(1), 29–36 (2020). https://doi.org/10.1007/s10973-019-08418-y

    Article  Google Scholar 

  32. F. Dagdelen, M. Kok, I.N. Qader, Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Met. Mater. Int. 25(6), 1420–1427 (2019). https://doi.org/10.1007/s12540-019-00298-z

    Article  Google Scholar 

  33. I.N. Qader, E. Ercan, B.A.M. Faraj, M. Kok, F. Dagdelen, Y. Aydogdu, The influence of time-dependent aging process on the thermodynamic parameters and microstructures of quaternary Cu79–Al12–Ni4–Nb5 (wt.%) shape memory alloy. Iran J. Sci. Technol. A 44(3), 903–910 (2020). https://doi.org/10.1007/s40995-020-00876-6

    Article  Google Scholar 

  34. J.-Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie, N. Chaillet, Modeling rearrangement process of martensite platelets in a magnetic shape memory alloy Ni2MnGa single crystal under magnetic field and (or) stress action. J. Intell. Mater. Syst. Struct. 18(3), 289–299 (2007). https://doi.org/10.1177/1045389X06066094

    Article  Google Scholar 

  35. B. Peultier, T.B. Zineb, E. Patoor, Macroscopic constitutive law of shape memory alloy thermomechanical behaviour. Application to structure computation by FEM. Mech. Mater. 38(5–6), 510–524 (2006). https://doi.org/10.1016/j.mechmat.2005.05.026

    Article  Google Scholar 

  36. D. Grevey, V. Vignal, I. Bendaoud, P. Erazmus-Vignal, I. Tomashchuk, D. Daloz, P. Sallamand, Microstructural and micro-electrochemical study of a tantalum–titanium weld interface. Mater. Des. 87, 974–985 (2015). https://doi.org/10.1016/j.matdes.2015.08.074

    Article  Google Scholar 

  37. O. Cisse, O. Savadogo, M. Wu, L.H. Yahia, Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. J. Biomed. Mater. Res. 61(3), 339–345 (2002)

    Article  Google Scholar 

  38. L. Zhou, G.-H. Lv, C. Ji, S.-Z. Yang, Application of plasma polymerized siloxane films for the corrosion protection of titanium alloy. Thin. Solid Films 520(7), 2505–2509 (2012)

    Article  ADS  Google Scholar 

  39. M. Pakshir, T. Bagheri, M. Kazemi, In vitro evaluation of the electrochemical behaviour of stainless steel and Ni-Ti orthodontic archwires at different temperatures. Eur. J. Orthod. 35(4), 407–413 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Management Unit of the Scientific Research Projects of Firat University (FUBAP) (Project Numbers: FF.19.14) and TÜBİTAK 119M300. This article is a part of the current Ph.D. study of E. Balci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Dagdelen.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest in the printing of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balci, E., Dagdelen, F., Qader, I.N. et al. Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. Eur. Phys. J. Plus 136, 145 (2021). https://doi.org/10.1140/epjp/s13360-021-01149-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01149-w

Navigation