Skip to main content

Advertisement

Log in

Hopf bifurcation analysis in an age-structured heroin model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Heroin is very dangerous for human health; hence, controlling it is crucial for public health. Through this paper, we investigate an age-structured heroin model for describing and predicting the outbreak of this opiate drug. In fact, the main idea for modeling red the outbreak of this opiate drug is to presume that it spreads as an infectious disease where the term infection can mean the influence of the drug consumer on the non-drug user to inter into the drug consumer class. Our goal is to investigate the impact of the remission of consuming drugs on the spread of this opiate drug in our society. This period can be considered as delay, so this delay can influence hugely the dynamical behavior of the solution, where we achieved the proof of the existence of Hopf bifurcation. For confirming the obtained mathematical findings, we used some numerical illustrations next to its epidemiological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.J. Garten, S. Lai, J. Zhang et al., Rapid transmission of hepatitis c virus among young injecting heroin users in southern china. Int. J. Epidemiol. 33, 182–188 (2004)

    Article  Google Scholar 

  2. J. Liu, T. Zhang, Global behaviour of a heroin epidemic model with distributed delays. Appl. Math. Lett. 24, 1685–1692 (2011)

    Article  MathSciNet  Google Scholar 

  3. E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling. Math. Biosci. 208, 312–324 (2007)

    Article  MathSciNet  Google Scholar 

  4. J. Yang, X. Li, F. Zhang, Global dynamics of a heroin epidemic model with age structure and nonlinear incidence. Internat. J. of Biomath. 9(3), 1650033 (2016)

    Article  MathSciNet  Google Scholar 

  5. S. Bentout, A. Tridane, S. Djilali, T.M. Touaoula, Age-structured modeling of COVID-19 epidemic in the USA. UAE and Algeria. Alex. Eng. J. 60(1), 401–411 (2020)

    Article  Google Scholar 

  6. S. Bentout, T.M. Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 434, 1211–1239 (2016)

    Article  MathSciNet  Google Scholar 

  7. S. Bentout, Y. Chen, S. Djilali, Global dynamics of an SEIR model with two age structures and a nonlinear incidence. Acta Appl. Math. 171, 7 (2021). https://doi.org/10.1007/s10440-020-00369-z

  8. S. Djilali, S. Bentout, Spatiotemporal patterns in a diffusive predator–prey model with prey social behavior. Acta Applicandae Mathematicae 169, 125–143 (2020)

    Article  MathSciNet  Google Scholar 

  9. B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 133, 109619 (2020)

    Article  MathSciNet  Google Scholar 

  10. E.F.D. Goufo, S. Kumar, S.B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 130, 109467 (2020)

    Article  MathSciNet  Google Scholar 

  11. M.M. Rashidi, A. Hosseini, I. Pop, S. Kumar et al., Comparative numerical study of single and two-phase models of nano-fluid heat transfer in wavy channel. Appl. Math. Mech. 35, 831–848 (2014)

    Article  MathSciNet  Google Scholar 

  12. B. Fang, X.Z. Li, M. Martcheva, L.-M. Cai, Global asymptotic properties of a heroin epidemic model with treat-age. Appl. Math. Comput. 263, 315–331 (2015)

    MathSciNet  MATH  Google Scholar 

  13. S. Djilali, T.M. Touaoula, S.E.H. Miri, A heroine epidemic model: very general non linear incidence, treat-age, and global stability. Acta Appl. Math. 152, 171–194 (2017)

    MATH  Google Scholar 

  14. S. Bentout, S. Djilali, B. Ghanbari, Backward, Hopf bifurcation in a heroin epidemic model with treat age. Int. J. Model. Simul. Sci. Comput. (2020). https://doi.org/10.1142/S1793962321500185

    Article  Google Scholar 

  15. L. Zhang, Y. Xing, Stability analysis of a reaction–diffusion heroin epidemic model. Complexity, Article ID 3781425 (2020)

  16. J. Wang, H. Sun, Analysis of a diffusive heroin epidemic model in a heterogeneous environment. Complexity Article ID 8268950 (2020)

  17. A. Khan, G. Zaman, R. Ullah, N. Naveed, Optimal control strategies for a heroin epidemic model with age-dependent susceptibility and recovery-age. AIMS Math. 6(2), 1377–1394 (2021)

    Article  MathSciNet  Google Scholar 

  18. R. Memarbashi, S. Taghavi, Backward bifurcation and global stability in a heroin epidemic model. Commun. Math. Biol. Neurosci. 2020, 17 (2020)

    Google Scholar 

  19. S. Djilali, Impact of prey herd shape on the predator–prey interaction. Chaos Solitons Fractals 120, 139–148 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Cao, X. Gao, J. Li, D. Yan, Z. Yue, The bifurcation analysis of an SIRS epidemic model with immunity age and constant treatment. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1698728

  21. Y.A. Kuznetsov, C. Piccardi, Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–121 (1994)

    Article  MathSciNet  Google Scholar 

  22. Z. Wang, Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model. J. Appl. Anal. Appl. 385, 1134–1150 (2012)

    Article  MathSciNet  Google Scholar 

  23. P. Yang, Hopf bifurcation of an age-structured prey-predator model with Holling type II functional response incorporating a prey refuge. Nonlinear Anal. Real World Appl. 49, 368–385 (2019)

    Article  MathSciNet  Google Scholar 

  24. Z. Liu, P. Magal, S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems. Zeitschrift für Angewandte Mathematik und Physik 62, 191–222 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Akgul, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives. Chaos 29(2), 023108 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Atangana, A. Akgul, On solutions of fractal fractional differential equations. Discrete Contin. Dyn. Syst. S (2018). https://doi.org/10.3934/dcdss.2020421

    Article  Google Scholar 

  27. E.K. Akgul, A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114, 478–482 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Inc, A. Akgul, A. Kilicman, Numerical solutions of the second-order one-dimensional telegraph equation based on reproducing kernel Hilbert space method. Abstr. Appl. Anal. Article ID 768963 (2013)

  29. M. Inc, A. Akgul, A. Kilicman, Explicit solution of telegraph equation based on reproducing kernel method. J. Funct. Spaces Article ID 984682 (2012)

  30. M. Modanli, A. Akgul, Numerical solution of fractional telegraph differential equations by theta-method. Eur. Phys. J. Spec. Top. 226, 3693–3703 (2017)

    Article  Google Scholar 

  31. A. Akgul, D. Grow, Existence of unique solutions to the telegraph equation in binary reproducing kernel Hilbert spaces. Differ. Equ. Dyn. Syst. 28, 715–744 (2020)

    Article  MathSciNet  Google Scholar 

  32. M. Modanli, A. Akgul, On solutions of fractional order telegraph partial differential equation by Crank–Nicholson finite difference method. Appl. Math. Nonlinear Sci. 5(1), 163–170 (2020)

    Article  MathSciNet  Google Scholar 

  33. A. Atangana, A. Akgul, Can transfer function and Bode diagram be obtained from Sumudu transform. Alex. Eng. J. 59(4), 1971–1984 (2020)

    Article  Google Scholar 

  34. T. Kuniya, T.M. Touaoula, Global stability for a class of functional differential equations with distributed delay and non-monotone bistable nonlinearity. Math. Biosci. Eng. 17(6), 7332–7352 (2020)

    Article  MathSciNet  Google Scholar 

  35. T.M. Touaoula, Global dynamics for a class of reaction–diffusion equations with distributed delay and Neumann condition. Commun. Pure Appl. Anal. 19(5), 2473–2490 (2018)

    Article  MathSciNet  Google Scholar 

  36. M.N. Frioui, T.M. Touaoula, B.E. Ainseba, Global dynamics of an age-structured model with relapse. Discrete Contin. Dyn. Syst. Ser. B 25(6), 2245–2270 (2020)

    MathSciNet  MATH  Google Scholar 

  37. N. Bessonov, G. Bocharov, T.M. Touaoula, S. Trofimchuk, V. Volpert, Delay reaction–diffusion equation for infection dynamics. Discrete Contin. Dyn. Syst. Ser. B 24(5), 2073–2091 (2019)

    MathSciNet  MATH  Google Scholar 

  38. T.M. Touaoula, Global stability for a class of functional differential equations (Application to Nicholson’s blowflies and Mackey–Glass models). Discrete Contin. Dyn. Syst. 38(9), 4391–4419 (2018)

    Article  MathSciNet  Google Scholar 

  39. T.M. Touaoula, M.N. Frioui, N. Bessonov, V. Volpert, Dynamics of solutions of a reaction–diffusion equation with delayed inhibition. Discrete Contin. Dyn. Syst. S 13(9), 2425–2442 (2018)

    Article  MathSciNet  Google Scholar 

  40. M.N. Frioui, S.E.-H. Miri, T.M. Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response. J. Appl. Math. Comput. 58(5–6), 47–73 (2017)

    MathSciNet  MATH  Google Scholar 

  41. P. Michel, T.M. Touaoula, Asymptotic behavior for a class of the renewal nonlinear equation with diffusion. Math. Methods Appl. Sci. 36(3), 323–335 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. I. Boudjema, T.M. Touaoula, Global stability of an infection and vaccination age-structured model with general nonlinear incidence. J. Nonlinear Funct. Anal. 2018(33), 1–21 (2018)

    Google Scholar 

  43. P. Magal, Compact attractors for time-periodic age structured population models. Electron. J. Differ. Equ. 2001(65), 1–35 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Bentout and S. Djilali are partially supported by DGESTR of Algeria No. C00L03UN130120200004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentout, S., Kumar, S. & Djilali, S. Hopf bifurcation analysis in an age-structured heroin model. Eur. Phys. J. Plus 136, 260 (2021). https://doi.org/10.1140/epjp/s13360-021-01167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01167-8

Navigation