Skip to main content
Log in

Monte Carlo simulation of radiation shielding properties of the glass system containing Bi2O3

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Monte Carlo simulation is an important tool to obtain some parameters of a material, especially when it is impossible to perform an experiment. Radiation shielding of a material has been very important properties as the radiation started to be used in a variety of different fields. Besides using it in different fields, thus protection from its hazardous effects becomes a popular subject for researchers. For this purpose, there have been many different works done for different types of materials. Glass is an important material, and it is interesting to investigate its radiation shielding properties. Thus, in the present study, waste soda–lime–silica-based glasses (SiO2–Na2O–CaO–Bi2O3) were calculated using MCNP simulation code, and the results were compared with the XCOM calculation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E.E. Altunsoy, H.O. Tekin, A. Mesbahi, I. Akkurt, Acta Phys. Pol. A 137, 561 (2020). https://doi.org/10.12693/APhysPolA.137.56

    Article  ADS  Google Scholar 

  2. I. Akkurt, Ann. Nucl. En. 36, 1702 (2009). https://doi.org/10.1016/j.anucene.2009.09.005

    Article  Google Scholar 

  3. O. Günay, M. Sarihan, O. Yarar, I. Akkurt, M. Demir, Acta Phys. Pol. A 137, 569 (2020). https://doi.org/10.12693/APhysPolA.137.569

    Article  ADS  Google Scholar 

  4. W. Gong, H. Yu, H. Ma, N. Wang, L. He, Study on the basic performance of basic magnesium sulfate cement concrete. Emerg. Mater. Res. 9(3), 618–627 (2020). https://doi.org/10.1680/jemmr.19.00039

    Article  Google Scholar 

  5. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, C. Basyigit, Ann. Nucl. Energy 37, 7 (2010). https://doi.org/10.1016/j.anucene.2010.04.001

    Article  Google Scholar 

  6. I. Akkurt, S. Emıkönel, F. Akarslan, K. Günoğlu, S. Kilinçarslan, I.S. Üncü, Acta Phys. Pol. A 128B, 53 (2015). https://doi.org/10.12693/APhysPolA.128.B-53

    Article  Google Scholar 

  7. K. Shah, M.N. Ravindra, Emerg. Mater. Res. 9(2), 342–346 (2020). https://doi.org/10.1680/jemmr.19.00123

    Article  Google Scholar 

  8. D. Sarıyer, Acta Phys. Pol. A 137, 539 (2020). https://doi.org/10.12693/APhysPolA.137.539

    Article  ADS  Google Scholar 

  9. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Cem. Concr. Compos. 28, 153 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  Google Scholar 

  10. J.P. Luo, J. Xiao, D.L. Zheng, G. Wang, J.F. Sun, M. Yan, Emerg. Mater. Res. 8(1), 22–28 (2019). https://doi.org/10.1680/jemmr.16.00098

    Article  Google Scholar 

  11. D. Sarıyer, R. Kucer, Acta Phys. Pol. A 137, 477 (2020). https://doi.org/10.12693/APhysPolA.137.477

    Article  ADS  Google Scholar 

  12. U. Kara, A. Mesbahi, I. Akkurt, Acta Phys. Pol. A 128B, 378 (2015). https://doi.org/10.12693/APhysPolA.128.B-378

    Article  Google Scholar 

  13. S. Al-Obaidi, H. Akyıldırım, K. Gunoglu, I. Akkurt, Acta Phys. Pol. A 137, 551 (2020). https://doi.org/10.12693/APhysPolA.137.551

    Article  ADS  Google Scholar 

  14. N.B. Singh, C.H. Su, F.S. Choa, B. Arnold, C. Cooper, B. Cullum, L. Kelly, Emerg. Mater. Res. 9(2), 520–526 (2020). https://doi.org/10.1680/jemmr.18.00050

    Article  Google Scholar 

  15. Md.F. Hossain, Md.S. Pervez, A.I. Nahid, Emerg. Mater. Res. 9(1), 186–191 (2020). https://doi.org/10.1680/jemmr.17.00085

    Article  Google Scholar 

  16. R.B. Malidarre, R. Khabaz, M.R. Benam, V. Zanganeh, Iran. J. Med. Phys. (2019). https://doi.org/10.22038/ijmp.2019.40879.1579

    Article  Google Scholar 

  17. S.H. Sharifi, R. Bagheri, S.P. Shirmardi, Ann. Nucl. Energy 53, 529 (2013). https://doi.org/10.1016/j.anucene.2012.09.015

    Article  Google Scholar 

  18. Y.Y. Çelen, A. Evcin, Synthesis and characterizations of magnetite–borogypsum for radiation shielding. Emerg. Mater. Res. 9(3), 770–775 (2020). https://doi.org/10.1680/jemmr.20.00098

    Article  Google Scholar 

  19. Y.S. Rammah, A. Kumar, K.A. Mahmoud et al., SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications. Emerg. Mater. Res. 9(3), 1000–1008 (2020). https://doi.org/10.1680/jemmr.20.00150

    Article  Google Scholar 

  20. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Nucl. Eng. Tech. (2019). https://doi.org/10.1016/j.net.2019.05.013

    Article  Google Scholar 

  21. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, K.A. Mahmoud, I. Akkurt, Nucl. Eng. Tech. (2020). https://doi.org/10.1016/j.net.2020.12.012

    Article  Google Scholar 

  22. F. Kulali, Simulation studies on the radiological parameters of marble concrete. Emerg. Mater. Res. 9(4), 1341–1347 (2020). https://doi.org/10.1680/jemmr.20.00307

    Article  Google Scholar 

  23. R.B. Malidarre, F. Kulali, A. Inal, A. Oz, Monte Carlo simulation of a waste soda–lime–silica glass system containing Sb2O3 for gamma-ray shielding. Emerg. Mater. Res. 9(4), 1334–1340 (2020). https://doi.org/10.1680/jemmr.20.00202

    Article  Google Scholar 

  24. M.I. Sayyed, R. El-Mallawany, Mater. Chem. Phys. 201, 50–56 (2017)

    Article  Google Scholar 

  25. K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Ann. Nucl. Energy 38, 1438 (2011). https://doi.org/10.1016/j.anucene.2011.01.031

    Article  Google Scholar 

  26. A. Kumar, Radiat. Phys. Chem. 136, 50 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.023

    Article  ADS  Google Scholar 

  27. S. Kaur, K.J. Singh, Ann. Nucl. Energy 63, 350 (2014). https://doi.org/10.1016/j.anucene.2013.08.012

    Article  Google Scholar 

  28. S.C. Roy, G.A. Sandison, Med. Phys. 27, 1800 (2000). https://doi.org/10.1118/1.1287438

    Article  Google Scholar 

  29. A. Kumar, A. Kumar, R. Dogra, M. Manhas, S. Sharma, R. Kumar, Emerg. Mater. Res. 9(1), 122–131 (2020). https://doi.org/10.1680/jemmr.18.00101

    Article  Google Scholar 

  30. S. Kaewjaeng et al., Radiat. Phys. Chem. 160, 41 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.018

    Article  ADS  Google Scholar 

  31. P. Sopapan, J. Laopaiboon, O. Jaiboon, C. Yenchai, R. Laopaiboon, Prog. Nucl. Energy 119, 03149 (2019). https://doi.org/10.1016/j.pnucene.2019.103149

    Article  Google Scholar 

  32. M.I. Sayyed, B.O. Elbashir, H.O. Tekin, E.E. Altunsoy, D.K. Gaikwad, J. Phys. Chem. Solids 121, 7 (2018). https://doi.org/10.1016/j.jpcs.2018.05.009

    Article  ADS  Google Scholar 

  33. S. Verma, S.K. Sanghi, S.S. Amritphale, J. Inorg. Organomet. Polym. Mater. 28, 35 (2018). https://doi.org/10.1007/s10904-017-0697-3

    Article  Google Scholar 

  34. J. Kaewkhao, A. Pokaipisit, P. Limsuwan, J. Nucl. Mater. 399, 38 (2010). https://doi.org/10.1016/j.jnucmat.2009.12.020

    Article  ADS  Google Scholar 

  35. E.S.A. Waly, M.A. Fusco, M.A. Bourham, Ann. Nucl. Energy 96, 26 (2016). https://doi.org/10.1016/j.anucene.2016.05.028

    Article  Google Scholar 

  36. M.I. Sayyed, M. Çelikbilek, A. Ersundu, E. Ersundu, G. Lakshminarayana, P. Kostka, Radiat. Phys. Chem. 144, 419 (2017). https://doi.org/10.1016/j.radphyschem.2017.10.005

    Article  ADS  Google Scholar 

  37. H. Özdemir, B. Camgöz, J. Ind. Text. 47, 712 (2018). https://doi.org/10.1177/1528083716670309

    Article  Google Scholar 

  38. J.H. Liu et al., J. Phys. Chem. Solids 112, 185 (2018). https://doi.org/10.1016/j.jpcs.2017.09.007

    Article  ADS  Google Scholar 

  39. J.E. Shelby, Chapter 1, introduction, in Introduction to Glass Science and Technology: Edition 2, 1 (2006)

  40. M.F. Ashby, Materials and the Environment (Elsevier, Amsterdam, 2013), p. 459

    Book  Google Scholar 

  41. M. Hasanuzzaman, A. Rafferty, M. Sajjia, A.G. Olabi, Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2016).

    Google Scholar 

  42. R. Kurtulus, T. Kavas, I. Akkurt, K. Gunoglu, Ceram. Int. 46, 21120 (2020). https://doi.org/10.1016/j.ceramint.2020.05.188

    Article  Google Scholar 

  43. J. Briesmeister, in MCNP—A General Monte Carlo Code for Neutron and Photon Transport. National Laboratory, Los Alamos, 2000 Report LA13709-M, version 4C (1986)

  44. “NIST XCOM: Element/Compound/Mixture.” [Online]. Available: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html. Accessed 14 Feb 2020

  45. M. Berger, J. Hubbell, Natl. Bur. Stand. Wash., DC (U. S. A.) Cent. Radiat. Res. (1987). https://doi.org/10.2172/6016002

    Article  Google Scholar 

  46. V.P. Singh, N.M. Badiger, J. Kaewkhao, J. Non Cryst. Solids 404, 167 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.08.003

    Article  ADS  Google Scholar 

  47. S.A. Tijani, Y. Al-Hadeethi, Ceram. Int. 45, 23572 (2019). https://doi.org/10.1016/j.ceramint.2019.08.066

    Article  Google Scholar 

  48. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.C. Ersundu, A.E. Ersundu, I.V. Kityk, Radiat. Phys. Chem. 145, 26 (2018). https://doi.org/10.1016/j.radphyschem.2017.12.0

    Article  ADS  Google Scholar 

  49. I. Akkurt, B. Mavi, A. Akkurt, C. Basyigit, S. Kilincarslan, H.A. Yalim, J. Quant. Spect. Rad. Transf. 94, 379 (2005). https://doi.org/10.1016/j.jqsrt.2004.09.024

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskender Akkurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkurt, I., Malidarre, R.B. & Kavas, T. Monte Carlo simulation of radiation shielding properties of the glass system containing Bi2O3. Eur. Phys. J. Plus 136, 264 (2021). https://doi.org/10.1140/epjp/s13360-021-01260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01260-y

Navigation