Skip to main content
Log in

Quantum mechanical and molecular mechanical simulation approaches bridging length and time scales for simulation of interface reactions in realistic environments

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Computer-assisted design of functional materials requires methods that are able to simultaneously describe these with the necessary accuracy at the relevant time and length scales. One such possibility is the combination of classical interatomic force fields with density-functional based tight-binding (DFTB), an efficient and accurate quantum method. We employ this combination to study porous silicon dioxide functionalized with imidazole, which is used as an additive to polymer electrolyte membranes (PEM) for fuel cells applications. We analyze the water density and the dynamics of the functional groups at different temperatures by molecular dynamics simulation, whereas we calculate DFTB free energy barriers for proton transport reactions within the functionalized surface at different water contents. Combining both results, a macroscopic picture of the proton diffusion is drawn. Furthermore, we simulate the adsorption reactions of different components of an epoxide adhesive system on gamma alumina, using a direct coupling of DFTB and classical modeling. This yields direct chemical insight, how water and excess protons at the interface weaken the adhesion between epoxy polymers and natively oxidized aluminium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)

    Article  Google Scholar 

  2. J. Gao, D.G. Truhlar, Annu. Rev. Phys. Chem. 53, 467 (2002)

    Article  Google Scholar 

  3. A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2002)

    Article  Google Scholar 

  4. Q. Cui, M. Karplus, Adv. Prot. Chem. 66, 315 (2003)

    Article  Google Scholar 

  5. C. Lennartz, A. Schaefer, F. Terstegen, W. Thiel, J. Phys. Chem. B 106, 1758 (2002)

    Article  Google Scholar 

  6. V. Guallar, R.A. Friesner, J. Am. Chem. Soc. 126, 8501 (2004)

    Article  Google Scholar 

  7. G.A. Cisneros, H.Y. Liu, Y.K. Zhang, W.T. Yang, J. Am. Chem. Soc. 125, 10384 (2003)

    Article  Google Scholar 

  8. T. Woo, P. Margl, L. Deng, L. Cavallo, T. Ziegler, Catalysis Today 50, 479 (1999)

    Article  Google Scholar 

  9. A. Maiti, M. Sierka, J. Andzelm, J. Golab, J. Sauer, J. Phys. Chem. A 104, 10932 (2000)

    Article  Google Scholar 

  10. C. Choi, M. Gordon, J. Am. Chem. Soc. 121, 11311 (1999)

    Article  Google Scholar 

  11. P. Sinclair, A. de Vries, P. Sherwood, C. Catlow, R. van Santen, J. Chem. Soc., Faraday Trans. 94, 3401 (1998)

    Article  Google Scholar 

  12. P. König, M. Hoffmann, T. Frauenheim, Q. Cui, J. Phys. Chem. B 109, 9082 (2005)

    Article  Google Scholar 

  13. D. Riccardi, P. Schaefer, Y. Yang, H. Yu, N. Ghosh, X. Prat-Resina, P. König, G. Li, D. Xu, H. Guo, et al., J. Phys. Chem. B 110, 6458 (2006)

    Article  Google Scholar 

  14. P. Sherwood, A.H. de Vries, M.F. Guest, G. Schreckenbach, C.R.A. Catlow, S.A. French, A.A. Sokol, S.T. Bromley, W. Thiel, A.J. Turner, et al., THEOCHEM 632, 1 (2003)

    Article  Google Scholar 

  15. I. Hillier, J. Mol. Struct. (Theochem) 463, 45 (1999)

    Article  Google Scholar 

  16. J. Sauer, M. Sierka, J. Comput. Chem. 21, 1470 (2000)

    Article  Google Scholar 

  17. J. Noell, K. Morokuma, J. Phys. Chem. 80, 2675 (1976)

    Article  Google Scholar 

  18. N. Lopez, G. Pacchioni, F. Maseras, F. Illas, Chem. Phys. 294, 611 (1998)

    ADS  Google Scholar 

  19. M.J. Field, P.A. Bash, M. Karplus, J. Comput. Chem. 11, 700 (1990)

    Article  Google Scholar 

  20. M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100, 19357 (1996)

    Article  Google Scholar 

  21. B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007)

    Article  Google Scholar 

  22. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)

    Article  ADS  Google Scholar 

  23. T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, Phys. Stat. Sol. (b) 217, 41 (2000)

    Article  ADS  Google Scholar 

  24. P. Politzer, R.S. Mulliken, J. Chem. Phys. 55, 5135 (1971), http://link.aip.org/link/?JCP/55/5135/1

    Article  ADS  Google Scholar 

  25. R.F.W. Bader, T. Nguyen-Dang, T.Y. Rep. Prog. Phys. 44, 893 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  26. DFTB +, http://www.dftb-plus.info

  27. W. Hoover, et al., Physical Review A 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  28. Nose, Mol. E. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  29. H. Berendsen, J. Postma, W. Van Gunsteren, A. DiNola, J. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  30. E. Lindahl, B. Hess, D. van der Spoel, J. Molec. Model. 7, 306 (2001)

    Google Scholar 

  31. B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4, 187 (1983)

    Article  Google Scholar 

  32. W. Jorgensen, D. Maxwell, J. Tirado-Rives, Q. ReV. Biophys. 26, 49 (1993)

    Article  Google Scholar 

  33. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  34. C. Bartels, R. Stote, M. Karplus, J. Molec. Biol. 284, 1641 (1998)

    Article  Google Scholar 

  35. J. Kottalam, D. Case, J. Am. Chem. Soc. 110, 7690 (1988)

    Article  Google Scholar 

  36. S. Kumar, J. Rosenberg, D. Bouzida, R. Swendsen, P. Kollman, J. Comput. Chem. 16, 1339 (1995)

    Article  Google Scholar 

  37. S. Kumar, J. Rosenberg, D. Bouzida, R. Swendsen, P. Kollman, J. Comput. Chem. 13, 1011 (1992)

    Article  Google Scholar 

  38. P. König, N. Ghosh, M. Hoffmann, M. Elstner, E. Tajkhorshid, T. Frauenheim, Q. Cui, J. Phys. Chem. A 110, 548 (2006)

    Article  Google Scholar 

  39. P. Tölle, W. Cavalcanti, M. Hoffmann, C. Kohler, T. Frauenheim, Fuel Cells 8 (2008)

  40. H. Jónsson, G. Mills, K.W. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapur, 1998), chap. Nudged elastic band method for finding minimum energy paths of transitions, pp. 387–405

    Google Scholar 

  41. A.J. Du, S.C. Smith, X.D. Yao, G.Q. Lu, J. Phys. Chem. B 109, 18037 (2005)

    Article  Google Scholar 

  42. C. Sbraccia, C.A. Pignedoli, A. Catellani, R. Di Felice, P.L. Silverstrelli, F. Toigo, F. Ancilotto, C.M. Bertoni, Comput. Phys. Commun. 169, 32 (2005)

    Article  ADS  Google Scholar 

  43. T. Bakos, M. Valipa, E.S. Aydil, D. Maoudas, Chem. Phys. Lett. 414, 61 (2005)

    Article  ADS  Google Scholar 

  44. P. Maragakis, S.A. Adreev, Y. Brumer, D.R. Reichmann, E. Kaxiras, J. Chem. Phys. 117, 4651 (2002)

    Article  ADS  Google Scholar 

  45. G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)

    Article  ADS  Google Scholar 

  46. G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)

    Article  ADS  Google Scholar 

  47. J.M. Knaup, C. Köhler, T. Frauenheim, A.T. Blumenau, M. Amkreutz, P. Schiffels, B. Schneider, O.D. Hennemann, J. Phys. Chem. B 110, 20460 (2006)

    Article  Google Scholar 

  48. S. Paddison, K. Kreuer, J. Maier, Phys. Chem. Chem. Phys. 8, 4530 (2006)

    Article  Google Scholar 

  49. K. Kreuer, S. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004)

    Article  Google Scholar 

  50. S. Paddison, Ann. Rev. Mater. Res. 33, 289 (2003)

    Article  Google Scholar 

  51. W.H.M.F.H. Schuster, Ann. Rev. Mater. Res. 33, 233 (2003)

    Article  Google Scholar 

  52. S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, M. Mikami, J. Phys. Chem. B 109, 4269 (2005)

    Article  Google Scholar 

  53. E. Spohr, P. Commer, A. Kornyshev, J. Phys. Chem. B-Condensed Phase 106, 10560 (2002)

    Google Scholar 

  54. S. Scheiner, M. Yi, J. Phys. Chem. 100, 9235 (1996)

    Article  Google Scholar 

  55. W. Münch, K. Kreuer, W. Silvestri, J. Maier, G. Seifert, Solid State Ionics 145, 437 (2001)

    Article  Google Scholar 

  56. A. Kawada, A. McGhie, M. Labes, J. Chem. Phys. 52, 3121 (1970)

    Article  ADS  Google Scholar 

  57. M. Iannuzzi, J. Chem. Phys. 124, 204710 (2006)

    Article  ADS  Google Scholar 

  58. R. Marschall, J. Rathousky, M. Wark, ChemInform 39 (2008)

  59. M. Wilhelm, M. Jeske, R. Marschall, W. Cavalcanti, P. Tölle, C. Köhler, D. Koch, T. Frauenheim, G. Grathwohl, J. Caro, et al., J. Membr. Sci. 316, 164 (2008)

    Article  Google Scholar 

  60. W. Cavalcanti, R. Marschall, P. Tölle, C. Köhler, M. Wark, T. Frauenheim, Fuel Cells 8 (2008)

  61. R. Marschall, P. Tölle, C. Köhler, W. Cavalcanti, M. Wilhelm, T. Frauenheim, M. Wark, J. Phys. Chem. B (2009)

  62. P. Lopes, V. Murashov, M. Tazi, E. Demchuk, A. MacKerell Jr., J. Phys. Chem. B 110, 2782 (2006)

    Article  Google Scholar 

  63. W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey, M. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  64. J. Theobald, N. Oxtoby, M. Phillips, N. Champness, P. Beton, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  65. M. Hodges, D. Wales, Chem. Phys. Lett. 324, 279 (2000)

    Article  ADS  Google Scholar 

  66. S. Maheshwary, N. Patel, N. Sathyamurthy, A. Kulkarni, S. Gadre, J. Phys. Chem. A 105, 10525 (2001)

    Article  Google Scholar 

  67. A. Becke, J. Chem. Phys. 98, 1372 (1993)

    Article  ADS  Google Scholar 

  68. C. Møller, M. Plesset, Phys. Rev. 46, 618 (1934)

    Article  MATH  ADS  Google Scholar 

  69. H. Hu, Z. Lu, M. Elstner, J. Hermans, W. Yang, J. Phys. Chem. A 111, 5685 (2007)

    Article  Google Scholar 

  70. K. Wefers, C. Misra, Tech. Rep., Alcoa Laboratories (1987)

  71. A.F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie (de Gruyter, Berlin, 1995), chap. Das Aluminium, pp. 1081–1083

    Google Scholar 

  72. J.M. Knaup, Ph.D. thesis, Universität Paderborn, Warburger Str. 100, 33098 Paderborn (2008), http://ubdok.uni-paderborn.de/servlets/DocumentServlet?id=8076

  73. B. Schneider, P. Schiffels, R. Wilken, Bonding of Amine Curing Agents to Native Aluminum Oxide Surfaces, in Proceedings of the 28th Annual Meeting of the Adhesion Society (2005), p. 431

  74. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996), http://www.ks.uiuc.edu/Research/vmd

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Knaup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knaup, J., Tölle, P., Köhler, C. et al. Quantum mechanical and molecular mechanical simulation approaches bridging length and time scales for simulation of interface reactions in realistic environments. Eur. Phys. J. Spec. Top. 177, 59–81 (2009). https://doi.org/10.1140/epjst/e2009-01168-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-01168-5

Keywords

Navigation