Skip to main content
Log in

Elementary models of dynamic networks

  • Regular Article
  • The Dynamics OF Networks: General Theory
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Inspecting the dynamics of networks opens a new dimension in understanding the interactions among the components of complex systems. Our goal is to understand the baseline properties expected from elementary random changes over time, in order to be able to assess the various effects found in longitudinal data. We created elementary dynamic models from classic random and preferential networks. Focusing on edge dynamics, we defined several processes for changing networks of a fixed size. We applied simple rules, including random, preferential and assortative modifications of existing edges – or a combination of these. Starting from initial Erdos-Rényi networks, we examined various basic network properties (e.g., density, clustering, average path length, number of components, degree distribution, etc.) of both snapshot and cumulative networks (for various lengths of aggregation time windows). Our results provide a baseline for changes to be expected in dynamic networks. We found universalities in the dynamic behavior of most network statistics. Furthermore, our findings suggest that certain network properties have a strong, non-trivial dependence on the length of the sampling window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Apolloni, F. Gargiulo, 1103.0973 (2011)

  2. A. Apolloni, A. Marathe, Z. Pan, Alongitudinal view of the relationship between social marginalization, obesity. In Social Computing, Behavioral-Cultural Modeling and Prediction, edited by John Salerno, Shanchieh Jay Yang, Dana Nau, and Sun-Ki Chai, Vol. 6589 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011), p. 61

  3. A.-L Barabási, R. Albert, Science 286(5439), 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Erdõs, A. Rényi, Publicationes Mathematicae (Debrecen) 6, 290 (1959)

    MathSciNet  Google Scholar 

  5. L. Gulyás, E.R. Dugundji, http://adsabs.harvard.edu/abs/2006physics..10125G, (2006)

  6. L. Gulyás, G. Horváth, T. Cséri, Z. Szakolczi, G. Kampis, Presented at the 19th International Symposium on Mathematical Theory of Networks, Systems (MTNS 2010), 2010

  7. P. Holme, J. Saramäki, CoRR 1108, 1780 (2011)

    Google Scholar 

  8. L. Isella, M. Romano, A. Barrat, C. Cattuto, V. Colizza, W. Van den Broeck, F. Gesualdo, E. Pandolfi, L. Rava, C. Rizzo, A.E. Tozzi, PLoS ONE 6, e17144 (2011)

    Article  ADS  Google Scholar 

  9. L. Isella, J. Stehle, A. Barrat, C. Cattuto, J.-F. Pinton, W. Van den Broeck, J. Theor. Biol. 271, 166 (2011)

    Article  Google Scholar 

  10. G. Kampis, Presented at ASNA Conference, Zürich (2010)

  11. G. Kampis, Presented at the International School, Conferene on Network Science (NetSci 2010), (2010)

  12. G. Kampis, L. Gulyás, Eur. Phys. J. Special Topics 222 (6), 1359 (2013)

    Article  ADS  Google Scholar 

  13. S. Lee, L.E.C. Rocha, F. Liljeros, P. Holme, Exploiting temporal network structures of human interaction to effectively immunize populations, 1011.3928 (2010)

  14. R.O. Legéndi, L. Gulyás, Proceedings of the 7th European Social Simulation Association Conference, Montpellier, France (2011)

  15. J. Leskovec, J. Kleinberg, C. Faloutsos, ACM transactions on Knowledge Discovery from Data (TKDD) 1, 2007, ACM ID: 1217301

  16. J. Leskovec, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2008, AAI3340652

  17. R. Kumar, P. Jari Saramäki, Phys. Rev. E 84, 016105 (2011)

  18. R.O. Legéndi, L. Gulyás, Proceedings of the Satellite Meeting EPNACS 2011 within ECCS’11 in Vienna, Austria (2011)

  19. J. Stehle, A. Barrat, G. Bianconi, Phys. Rev. E 81, 035101(R) (2010)

    Article  ADS  Google Scholar 

  20. D.J. Watts, Proc. Nat. Acad. Sci. 99, 5766 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Gulyás, George Kampis or Richard O. Legendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyás, L., Kampis, G. & Legendi, R.O. Elementary models of dynamic networks. Eur. Phys. J. Spec. Top. 222, 1311–1333 (2013). https://doi.org/10.1140/epjst/e2013-01928-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01928-6

Keywords

Navigation