Skip to main content

Advertisement

Log in

A non-ideal portal frame energy harvester controlled using a pendulum

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A model of energy harvester based on a simple portal frame structure is presented. The system is considered to be non-ideal system (NIS) due to interaction with the energy source, a DC motor with limited power supply and the system structure. The nonlinearities present in the piezoelectric material are considered in the piezoelectric coupling mathematical model. The system is a bi-stable Duffing oscillator presenting a chaotic behavior. Analyzing the average power variation, and bifurcation diagrams, the value of the control variable that optimizes power or average value that stabilizes the chaotic system in the periodic orbit is determined. The control sensitivity is determined to parametric errors in the damping and stiffness parameters of the portal frame. The proposed passive control technique uses a simple pendulum to tuned to the vibration of the structure to improve the energy harvesting. The results show that with the implementation of the control strategy it is possible to eliminate the need for active or semi active control, usually more complex. The control also provides a way to regulate the energy captured to a desired operating frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.F. Ali, S. Adhikari, M.I. Friswell, S. Narayanan, J. Appl. Phys. 109, 074904 (2011)

    Article  ADS  Google Scholar 

  2. J.M. Balthazar, D.T. Mook, H.I. Weber, R.M.L.R.F. Brasil, A. Fenili, D. Belato, J.L.P. Felix, Meccanica 38, 613 (2003)

    Article  MATH  Google Scholar 

  3. D. Belato, J.M. Balthazar, H.I. Weber, D.T. Mook, Nonlinear Dynamics, Chaos, Control and Their Applications to Engineering Sciences 2, Vibrations with Measurements and Control, edited by J.M. Balthazar, P.B. Gonçalvez, J. Clayssen, 222 (1999)

  4. D.A.W. Barton, S.G. Burrow, L.R. Clare, J. Vibr. Acoust. 132, 021009 (2010)

    Article  Google Scholar 

  5. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  6. A. Erturk, D.J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, Ltd., 2011)

  7. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  8. A. Erturk, D.J. Inman, J. Sound Vibr. 330, 2339 (2011)

    Article  ADS  Google Scholar 

  9. M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, C. Trigona, Sensors Actuators A 162, 425 (2010)

    Article  Google Scholar 

  10. M.I. Friswell, S.F. Ali, S. Adhikari, A.W. Lees, O. Bilgen, G. Litak, J. Intell. Material Syst. Struct. 23, 1505 (2012)

    Article  Google Scholar 

  11. W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity Evolution and Future of a Technology (Springer Series in Materials Science ISSN 0933-033x, Springer-Verlag Berlin Heidelberg, 2008)

  12. I. Iliuk, J.M. Balthazar, A.M. Tusset, B.R. Pontes Jr, J.L.P. Felix, J. Differential Equations Dyn. Sys. 21, 93 (2013)

    Article  MATH  Google Scholar 

  13. I. Iliuk, J.M. Balthazar, A.M. Tusset, B.R. Pontes Jr., J.L.P. Felix, MATEC Web of Conferences, 08003 (2012)

  14. N. Jalili, Piezoelectric-Based Vibration Control, From Macro to Micro/Nano Scale Systems (Springer Science Business Media, LLC., 2010)

  15. M.A. Karami, D.J. Inman, J. Sound Vibr. 330, 5583 (2011)

    Article  ADS  Google Scholar 

  16. G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  17. G. Litak, M.I. Friswell, C.A. Kitio Kwuimy, S. Adhikari, B. Borowiec, Theoretical Appl. Mech. Lett. 2, 043009 (2012)

    Article  Google Scholar 

  18. B.P. Mann, N.D. Sims, J. Sound Vibr. 319, 515 (2009)

    Article  ADS  Google Scholar 

  19. C. McInnes, D. Gorman, M. Cartmell, J. Sound Vibr. 318, 655 (2010)

    Article  ADS  Google Scholar 

  20. S. Priya, D.J. Inman, Energy Harvesting Technologies (Springer Science Business Media, LLC., 2009)

  21. D. Sado, M. Kot, J. Theoretical Appl. Mech. 45, 119 (2007)

    Google Scholar 

  22. J. Scruggs, J. Sound Vibr. 320, 707 (2009)

    Article  ADS  Google Scholar 

  23. S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D: Nonlinear Phenomena 239, 640 (2010)

    Article  MATH  ADS  Google Scholar 

  24. A. Triplett, D.D. Quinn, J. Intell. Material Syst. Struct. 20, 1959 (2009)

    Article  Google Scholar 

  25. A.M. Tusset, J.M. Balthazar, F.R Chavarette, J.L.P. Felix, Nonlinear Dyn. 69, 1859 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. A.M. Tusset, J.M. Balthazar, J.L.P. Felix, J. Vibr. Control, 1 (2012)

  27. A.M. Tusset, J.M. Balthazar, Differential Equations Dyn. Syst. 21, 105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. U. Von Wagner, P. Hagedorn, J. Sound Vibr. 256, 861 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Iliuk, J.M. Balthazar, A.M. Tusset, J.R.C. Piqueira, B. Rodrigues de Pontes, J.L.P. Felix or Á.M. Bueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iliuk, I., Balthazar, J., Tusset, A. et al. A non-ideal portal frame energy harvester controlled using a pendulum. Eur. Phys. J. Spec. Top. 222, 1575–1586 (2013). https://doi.org/10.1140/epjst/e2013-01946-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01946-4

Keywords

Navigation