Skip to main content

Advertisement

Log in

Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The possibility of recycling ambient energies with electric generators instead of using batteries with limited life spans has stimulated important research efforts over the past years. The integration of such generators into mainly autonomous low-power systems, for various industrial or domestic applications is envisioned. In particular, the present work deals with energy harvesting from mechanical vibrations. It is shown here that direct piezoelectric energy harvesting (short circuiting on an adapted resistance, for example) leads to relatively weak energy levels that are insufficient for an industrial development.

By coupling an electric field and mechanical excitation on Ericsson-based cycles, the amplitude of the harvested energy can be highly increased, and can reach a maximum close to 100 times its initial value. To obtain such a gain, one needs to employ high electrical field levels (high amplitude, high frequency), which induce a non-linearity through the piezoceramic. A special dynamic hysteresis model has been developed to correctly take into account the material properties, and to provide a real estimation of the harvested energy. A large number of theoretical predictions and experimental results have been compared and are discussed herein, in order to validate the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.A. Sodano, D.J. Inman, Shock Vib. Dig. 36, 197 (2004)

    Article  Google Scholar 

  2. L. Collins, IEEE Power Eng. 20, 34 (2006)

    Google Scholar 

  3. G. Park, T. Rosing, M.D. Todd, C.R. Farrar, W. Hodgkiss, ASCE J. Infrastruct. Syst. 14, 64 (2008)

    Article  Google Scholar 

  4. X. Tang, L. Zuo, “Towards MESO and macro scale energy harvesting of vibration” Proc. 2009 ASME Int. Mechanical Engineering Congress and Exposition (Florida, 2009)

  5. J. Paradiso, T. Starner, IEEE Pervasive Comput. 4, 18 (2009)

    Article  Google Scholar 

  6. Y. Kawamoto, Y. Suda, H. Inoue, T. Kondo, Veh. Syst. Dyn. 46, 1053 (2008)

    Article  Google Scholar 

  7. L. Zuo, B. Scully, J. Shetani, Y. Zhou, Smart Mater. Struct. 19, 045003 (2010)

    Article  ADS  Google Scholar 

  8. J.T. Scruggs, W.D. Iwan, Struct. Control. Health. Monit. 50, 25 (2005)

    Article  Google Scholar 

  9. T. Ni, L. Zuo, A. Kareem, “Assessment of energy potential and vibration mitigation of regenerative tuned mass dampers on wind excited tall buildings”, ASME Design Engineering Technical Conf., Washington DC, 28–31 Aug., 2011

  10. X. Tang, L. Zuo, “Self-powered active control of structures with TMDs”, IMAC XXVIII Conf. and Exposition on Structural Dynamics: Structural Dynamics and Renewable Energy (Florida, 2010)

  11. X. Tang, L. Zuo, “Regenerative semi-active control of tall building vibration with series TMDs”, Proc. America Control Conf., Baltimore, MD, June 30–July 2, 2010

  12. E. Lefeuvre, G. Sebald, D. Guyomar, M. Lallart, C. Richard, J. Electroceram. 22, 171 (2009)

    Article  Google Scholar 

  13. D. Guyomar, Y. Jayet, L. Petit, E. Lefeuvre, T. Monnier, C. Richard, M. Lallart, Sens. Actuators A: Phys. 138, 151 (2007)

    Article  Google Scholar 

  14. J.A. Paradiso, T. Starner, IEEE Pervasive Comput. 4, 18 (2005)

    Article  Google Scholar 

  15. P. Glynne-Jones, S.P. Beeby, N.M. White, IEE Proc. Sci. Meas. Technol. 148, 68 (2001)

    Article  Google Scholar 

  16. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Smart Mat. Struct. 20, 102001 (2011)

    Article  ADS  Google Scholar 

  17. T.W. Ma, Proc. Institution Mech. Engineers part I – J. Syst. Control Eng. 225, 467 (2011)

    Google Scholar 

  18. R. Ramlan, M.J. Brennan, B.R. Mace, S.G. Burrow, J. Intell. Material Syst. Struct. 23, 1423 (2012)

    Article  Google Scholar 

  19. B. Ducharne, D. Guyomar, G. Sebald, J. Phys. D: Appl. Phys. 40, 551 (2007)

    Article  ADS  Google Scholar 

  20. D. Guyomar, B. Ducharne, G. Sebald, IEEE Trans. Ultrason. Ferrelectr. Freq. Control 56, 437 (2009)

    Article  Google Scholar 

  21. D. Guyomar, B. Ducharne, G. Sebald, J. Phys. D: Appl. Phys. 41, 125410 (2008)

    Article  ADS  Google Scholar 

  22. D. Guyomar, B. Ducharne, G. Sebald, J. Appl. Phys. 107, 114108 (2010)

    Article  ADS  Google Scholar 

  23. D. Guyomar, B. Ducharne, G. Sebald, J. Phys. D: Appl. Phys. 40, 6048 (2007)

    Article  ADS  Google Scholar 

  24. D. Guyomar, B. Ducharne, G. Sebald, Smart Mater. Struct. 19, 045010 (2010)

    Article  ADS  Google Scholar 

  25. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  26. G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Ducharne, B., Guyomar, D. et al. Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material. Eur. Phys. J. Spec. Top. 222, 1733–1743 (2013). https://doi.org/10.1140/epjst/e2013-01958-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01958-0

Keywords

Navigation