Skip to main content
Log in

A matrix approach for partial differential equations with Riesz space fractional derivatives

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Fractional partial differential equations are emerging in many scientific fields and their numerical solution is becoming a fundamental topic. In this paper we consider the Riesz fractional derivative operator and its discretization by fractional centered differences. The resulting matrix is studied, with an interesting result on a connection between the decay behavior of its entries and the short memory principle from fractional calculus. The Shift-and-Invert method is then applied to approximate the solution of the partial differential equation as the action of the matrix exponential on a suitable vector which mimics the given initial conditions. The numerical results confirm the good approximation quality and encourage the use of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Celik, M. Duman, J. Comput. Phys. 231, 1743 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. N. Del Buono, L. Lopez, Comput. Sci.—ICCS 2003. Part II, Springer 2658, 111 (2003)

  3. N. Del Buono, L. Lopez, R. Peluso, SIAM J. Sci. Comput. 27, 278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Del Buono, L. Lopez, T. Politi, Math. Comput. Simul. 79, 1284 (2008)

    Article  MATH  Google Scholar 

  5. F. Diele, I. Moret, S. Ragni, SIAM J. Matrix Anal. Appl. 30, 1546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Diethelm, The analysis of fractional differential equations (Springer-Verlag, Berlin, 2010)

  7. J. van den Eshof, M. Hochbruck, SIAM J. Scientific Computing 27, 1438 (2006)

    Article  MATH  Google Scholar 

  8. L. Galeone, R. Garrappa, J. Comput. Appl. Math. 228, 548 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. L. Galeone, R. Garrappa, Math. Comput. Simul. 79, 1358 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Galeone, R. Garrappa, Mediterr. J. Math. 3, 565 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Gallopoulos, Y. Saad, Parallel Computing 10, 143 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Garrappa, Computers and Mathematics with Applications (2013), 10.1016/j.camwa.2013.01.022

  13. R. Garrappa, Mathematics and Computers in Simulation (2012), 10.1016/j.matcom.2012.04.009

  14. R. Garrappa, Int. J. Bif. Chaos 22 (2012)

  15. R. Garrappa, Int. J. Comput. Math. 87, 2281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Garrappa, J. Comput. Appl. Math. 229, 392 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. R. Garrappa, M. Popolizio, Adv. Comput. Math. 39, 205 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Garrappa, M. Popolizio, Comput. Math. Appl. 62, 876 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Garrappa, M. Popolizio, Math. Comput. Simulation 81, 1045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Garrappa, M. Popolizio, J. Comput. Appl. Math. 235, 1085 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.H. Golub, C.F. Van Loan, Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences, 1996)

  22. N.J. Higham, Functions of Matrices: Theory and Computation (SIAM, 2008)

  23. M. Hochbruck, C. Lubich, SIAM J. Numerical Anal. 34, 1911 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Q. Yang, F. Liu, I. Turner, Appl. Math. Modelling 34, 200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Lopez, V. Simoncini, SIAM J. Numer. Anal. 44, 613 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Lopez, V. Simoncini, BIT 46, 813 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. M.M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. C. Moler, C. Van Loan, SIAM Rev. 20, 801 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Moler, C. Van Loan, SIAM Rev. 45, 3 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. I. Moret, Numerical Linear Algebra Appl. 16, 431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Moret, P. Novati, BIT, Numerical Math. 44, 595 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Moret, P. Novati, SIAM J. Numerical Anal. 49, 2144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. I. Moret, M. Popolizio, Numerical Linear Algebra and Applications, doi: 10.1002/nla.1862

  34. I. Podlubny (Academic Press Inc., San Diego, 1999)

  35. T. Politi, M. Popolizio, Comput. Sci.—ICCS 2006. Part IV, Springer 3994, 708 (2006)

  36. M. Popolizio, La Matematica nella Società e nella Cultura, Rivista dell’Unione Matematica Italiana, Serie I, Vol. II, Agosto, 275 (2009)

  37. M. Popolizio, V. Simoncini, SIAM J. Matrix Anal. Appl. 30, 657 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Saad, SIAM J. Numerical Anal. 29, 209 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. J.G. Wendel, Amer. Math. Monthly 55, 563 (1948)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Popolizio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popolizio, M. A matrix approach for partial differential equations with Riesz space fractional derivatives. Eur. Phys. J. Spec. Top. 222, 1975–1985 (2013). https://doi.org/10.1140/epjst/e2013-01978-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01978-8

Keywords

Navigation