Skip to main content
Log in

Bayesian network structure learning using quantum annealing

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We introduce a method for the problem of learning the structure of a Bayesian network using the quantum adiabatic algorithm. We do so by introducing an efficient reformulation of a standard posterior-probability scoring function on graphs as a pseudo-Boolean function, which is equivalent to a system of 2-body Ising spins, as well as suitable penalty terms for enforcing the constraints necessary for the reformulation; our proposed method requires 𝓞(n 2) qubits for n Bayesian network variables. Furthermore, we prove lower bounds on the necessary weighting of these penalty terms. The logical structure resulting from the mapping has the appealing property that it is instance-independent for a given number of Bayesian network variables, as well as being independent of the number of data cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning (The MIT Press, 2009)

  2. D. Yu, X. Huang, H. Wang, Y. Cui, Q. Hu, R. Zhou, ApJ 710, 869 2010

    Article  ADS  Google Scholar 

  3. A. Djebbari, J. Quackenbush, BMC Syst. Biol. 2, 57 2008

    Article  Google Scholar 

  4. N. Friedman, M. Linial, I. Nachman, D. Pe’er, Using Bayesian networks to analyze expression data. In Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, RECOMB ’00 (New York, NY, USA, 2000. ACM), p. 121

  5. D. Maxwell Chickering, Learning Bayesian networks is np-complete (1996), p. 121

  6. S. Aaronson, BQP and the polynomial hierarchy. In Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10 (New York, NY, USA, 2010, ACM), p. 141

  7. L.K. Grover, A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96 (New York, NY, USA, 1996, ACM), p. 212

  8. R.D. Somma, D. Nagaj, M. Kieferová, Phys. Rev. Lett. 109, 050501 (2012)

    Article  ADS  Google Scholar 

  9. T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer, Science (2014)

  10. D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, V. Smelyanskiy, Quantum optimization of fully-connected spin glasses (2014)

  11. R.R. Tucci, An introduction to quantum Bayesian networks for mixed states (2012)

  12. R.R. Tucci, Quantum circuit for discovering from data the structure of classical Bayesian networks (2014)

  13. R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, A. Aspuru-Guzik, Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing (John Wiley & Sons, Inc., 2014), p. 201

  14. A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Scientific Reports 2 (2012)

  15. E.G. Rieffel, D. Venturelli, B. O’Gorman, M. Do, E. Prystay, V. Smelyanskiy, A case study in programming a quantum annealer for hard operational planning problems (submitted) (2014)

  16. A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, V. Smelyanskiy, R. Biswas, A quantum annealing approach for fault detection and diagnosis of graph-based systems (submitted) (2014)

  17. F. Gaitan, L. Clark, Phys. Rev. A 89, 022342 (2014)

    Article  ADS  Google Scholar 

  18. R. Babbush, V. Denchev, N. Ding, S. Isakov, H. Neven, Construction of non-convex polynomial loss functions for training a binary classifier with quantum annealing (2014)

  19. V.S. Denchev, Binary Classification with Adiabatic Quantum Optimization, Ph.D. thesis, Purdue University, 2013

  20. Z. Bian, F. Chudak, W.G. Macready, L. Clark, F. Gaitan, Phys. Rev. Lett. 111, 130505 (2013)

    Article  ADS  Google Scholar 

  21. J. Cussens, Bayesian network learning by compiling to weighted MAX-SAT. In UAI (2008), p. 105

  22. S.V. Isakov, I.N. Zintchenko, T.F. Rønnow, M. Troyer, Optimized simulated annealing code for Ising spin glasses (2014)

  23. D. Heckerman, D. Geiger, D. Maxwell Chickering, Mach. Learning 20, 197 (1995)

    MATH  Google Scholar 

  24. T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  25. P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)

    Article  ADS  Google Scholar 

  26. A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution (2000)

  28. R. Oliveira, B.M. Terhal. Quantum Info. Comput. 8, 900 (2008)

    MATH  MathSciNet  Google Scholar 

  29. W.M. Kaminsky, S. Lloyd. Scalable architecture for adiabatic quantum computing of np-hard problems, edited by A.J. Leggett, B. Ruggiero, P. Silvestrini, Quantum Computing and Quantum Bits in Mesoscopic Systems (Springer US, 2004), p. 229

  30. A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, A. Aspuru-Guzik. Phys. Rev. A 78, 012320 (2008)

    Article  ADS  Google Scholar 

  31. V. Choi, Quant. Inf. Proc. 7, 193 (2008)

    Article  MATH  Google Scholar 

  32. V. Choi, Quant. Inf. Proc. 10, 343 (2011)

    Article  MATH  Google Scholar 

  33. J. Cai, W.G. Macready, A. Roy, A practical heuristic for finding graph minors (2014)

  34. R. Babbush, B. O’Gorman, A. Aspuru-Guzik, Annal. Phys. 525, 877 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. N. Friedman, M. Goldszmidt, A. Wyner, Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI’99 (San Francisco, CA, USA, Morgan Kaufmann Publishers Inc, 1999), p. 196

  36. E. Boros, A. Gruber, On quadratization of pseudo-Boolean functions, CoRR, abs/1404.6538 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Smelyanskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Gorman, B., Babbush, R., Perdomo-Ortiz, A. et al. Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224, 163–188 (2015). https://doi.org/10.1140/epjst/e2015-02349-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02349-9

Keywords

Navigation