Skip to main content

Advertisement

Log in

Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization

  • Regular Article
  • Piezoelectric Energy Harvesting
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Piezomagnetoelastic energy harvesters are one among the widely explored configurations to improve the broadband characteristics of vibration energy harvesters. Such nonlinear harvesters follow a Moon beam model with two magnets at the base and one at the tip of the beam. The present article develops a geometric nonlinear mathematical model for the broadband piezomagnetoelastic energy harvester. The electromechanical coupling and the nonlinear magnetic potential equations are developed from the dimensional system parameters to describe the nonlinear dynamics exhibited by the system. The developed model is capable of characterizing the monostable, bistable and tristable operating regimes of the piezomagnetoelastic energy harvester, which are not explicit in the Duffing representation of the system. Bifurcations and attractor motions are analyzed as nonlinear functions of the distance between base magnets and the field strength of the tip magnet. The model is further used to characterize the potential wells and stable states, with due focus on the performance of the system in broadband energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Inman, A. Erturk, Piezoelectric Energy Harvesting (John Wiley and Sons, Inc., Hoboken, New Jersey, 2011)

  2. C. Williams, R. Yates, Sensors Actuators A-Phys. 52, 811 (1996)

    Article  Google Scholar 

  3. S.F. Ali, M.I. Friswell, S. Adhikari, Smart Mater. Struct. 19, 105010 (2010)

    Article  ADS  Google Scholar 

  4. J. Twiefel, H. Westermann, J. Intelligent Mater. Syst. Struct. 24, 1291 (2013)

    Article  Google Scholar 

  5. L. Tang, Y. Yang, C.K. Soh, J. Intelligent Mater. Syst. Struct. 21, 1867 (2010)

    Article  Google Scholar 

  6. F.C. Moon, P.J. Holmes, J. Sound Vibr. 65, 275 (1979)

    Article  ADS  Google Scholar 

  7. A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)

    Article  ADS  Google Scholar 

  8. S.C. Stanton, C.C. McGehee, B.P. Mann, Appl. Phys. Lett. 95, 174103 (2009)

    Article  ADS  Google Scholar 

  9. G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  10. S.F. Ali, S. Adhikari, M.I. Friswell, S. Narayanan, J. Appl. Phys. 109, 074904 (2011)

    Article  ADS  Google Scholar 

  11. A. Erturk, D.J. Inman, J. Sound Vibr. 330, 23392353 (2011)

    Article  Google Scholar 

  12. S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)

    Article  ADS  Google Scholar 

  13. Y. Zhu, J.W. Zu, Appl. Phys. Lett. 103, 041905 (2013)

    Article  ADS  Google Scholar 

  14. S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wanga, Appl. Energy 133, 3339 (2014)

    Article  Google Scholar 

  15. S.C. Stanton, C.C. McGehee, B.P. Mann, Phys. D 239, 640 (2010)

    Article  Google Scholar 

  16. A. Nayfeh, P. Pai, Linear and Nonlinear Structural Mechanics (Wiley Interscience, New Jersey, 2004)

  17. E. Esmailzadeh, G. Nakhaie-Jazar, International J. Non-Linear Mech. 33, 567577 (1998)

    Google Scholar 

  18. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, J. Intelligent Mater. Syst. Struct. 23, 1505 (2012)

    Article  Google Scholar 

  19. E.F. Crawley, AIAA J. 32, 16891699 (1994)

    Article  Google Scholar 

  20. C.Y.K. Chee, L. Tong, G.P. Steven, J. Intelligent Mater. Syst. Struct. 9, 3 (1998)

    Article  Google Scholar 

  21. A. Benjeddou, Comp. Structures 76, 347363 (2000)

    Article  Google Scholar 

  22. I. Chopra, AIAA Journal 40(11), 21452187 (2002)

    Article  Google Scholar 

  23. D.J. Leo, Engineering Analysis of Smart Material Systems (John Wiley and Sons, Inc., Hoboken, New Jersey, 2007)

  24. N. Derby, S. Olbert, American Assoc. Phys. Teachers 78, 229 (2010)

    ADS  Google Scholar 

  25. E. Ranz, [arXiv:phys./0610178]

  26. J.I. Tam, P. Holmes, J. Sound Vibr. 333, 1767 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Aravind Kumar, S.F. Ali or A. Arockiarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravind Kumar, K., Ali, S. & Arockiarajan, A. Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization. Eur. Phys. J. Spec. Top. 224, 2803–2822 (2015). https://doi.org/10.1140/epjst/e2015-02590-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02590-8

Keywords

Navigation