Skip to main content
Log in

The response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This article presents the response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress. Laboratory data from the literature, and new test data provided here, are used in the evaluation. The new data include uniaxial stress compression tests (at various strain rates and temperatures) and uniaxial stress tension tests (at low strain rates and ambient temperatures). The compression tests include experiments at ̇ε = 13,000 s−1, significantly extending the range of known strain rate data. The observed behavior of PMMA includes the following: it is brittle in compression at high rates, and brittle in tension at all rates; strength is dependent on the pressure, strain, strain rate, temperature, and the intermediate principal stress; the shear modulus increases as the pressure increases; and it is highly compressible. Also presented are novel, high velocity impact tests (using high-speed imaging) that provide insight into the initiation and evolution of damage. Lastly, computational constitutive models for pressure, strength, and failure are presented that provide responses that are in good agreement with the laboratory data. The models are used to compute several ballistic impact events for which experimental data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.P. Marsh, LASL Shock Hugoniot Data (University of California Press, CA, 1980), p. 446

  2. Y.M. Gupta, J. Appl. Phys. 51, 5352 (1980)

    Article  ADS  Google Scholar 

  3. M. Nasraoui, P. Forquin, L. Siad, A. Rusinek, Mater. Des. 37, 500 (2012)

    Article  Google Scholar 

  4. R. Quinson, J. Perez, M. Rink, A. Pavan, J. Mater. Sci. 32, 1371 (1997)

    Article  ADS  Google Scholar 

  5. N.A. Fleck, W.J. Stronge, J.H. Liu, Proc. R. Soc. Lond. A 429, 459 (1990)

    Article  ADS  Google Scholar 

  6. W.R. Blumenthal, C.M. Cady, M.F. Lopez, G.T. Gray III, D.J. Idar, Shock Compression of Condensed Matter-2001 (American Institute of Physics, 2002), p. 665

  7. Z. Li, J. Lambros, Int. J. Solids Struct. 38, 3549 (2001)

    Article  Google Scholar 

  8. A.D. Mulliken, M.C. Boyce, Int. J. Solids Struct. 43, 1331 (2006)

    Article  Google Scholar 

  9. J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, R.R. Adharapurapu, Int. J. Solids Struct. 43, (2006)

  10. P. Moy, W. Chen, T. Weearsooriya, A. Hsieh, Proceedings of the 2003 ASME Int. Mech. Eng. Congress (Washington, DC, Nov. 2003)

  11. D. Rittel, A. Brill, J. Mech. Phys. Solids 56, 1401 (2008)

    Article  ADS  Google Scholar 

  12. J.S. Harris, I.M. Ward, J.S.C. Parry, J. Mater. Sci. 6, 110 (1971)

    Article  ADS  Google Scholar 

  13. H. Wu, G. Ma, Y. Xia, Mater. Lett. 58, 3681 (2004)

    Article  Google Scholar 

  14. L.M. Barker, R.E. Hollenbach, J. Appl. Phys. 41, 4208 (1970)

    Article  ADS  Google Scholar 

  15. F.J. Zerilli, R.W. Armstrong, J. Mater. Sci. 42, 4562 (2007)

    Article  ADS  Google Scholar 

  16. D. Porter, P.J. Gould, Int. J. Solids Struct. 46, 1981 (2009)

    Article  Google Scholar 

  17. T.J. Holmquist, G.R. Johnson, J. Phys. IV (France) 1, 853 (1991)

    Article  Google Scholar 

  18. G.R. Johnson, W.H. Cook, Proceedings of the 7th International Symposium on Ballistics (The Hague, Netherlands, 1983)

  19. G.R. Johnson, R.A. Stryk, T.J. Holmquist, S.R. Beissel, Report No. WL-TR-1997-7039, Wright Laboratory (1997)

  20. G.R. Johnson, S. Chocron, C.E. Anderson, S.R. Beissel, T.J. Holmquist, Proceedings of the 27th International Symposium on Ballistics (Freiburg, Germany, 2013)

  21. G.R. Johnson, W.H. Cook, Eng. Frac. Mech. 21, 31 (1985)

    Article  Google Scholar 

  22. A.J. Hsieh, D. DeSchepper, P. Moy, P.G. Dehmer, J.W. Song, Report No. ARL-TR-3155, Army Research Laboratory (2004)

  23. P.G. Dehmer, M.A. Klusewitz, Report No. ARL-RP-45, Army Research Laboratory (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.J. Holmquist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmquist, T., Bradley, J., Dwivedi, A. et al. The response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress. Eur. Phys. J. Spec. Top. 225, 343–354 (2016). https://doi.org/10.1140/epjst/e2016-02636-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02636-5

Keywords

Navigation