Skip to main content
Log in

Signal transmission by autapse with constant or time-periodic coupling intensity in the FitzHugh–Nagumo neuron

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Based on the FitzHugh–Nagumo (FHN) neuron model, the effects of autapse with constant or time-periodic coupling intensity on signal transmission are investigated by calculating the Fourier coefficient Q for quantitatively characterizing the efficiency of the signal transmission. In the case of constant autaptic coupling intensity, the dependencies of Fourier coefficient Q on autaptic coupling intensity σ present bell-shaped curves and when the autaptic time delay τ is approximately multiple of the period of the sub-threshold external periodic signal, the maximums of Fourier coefficient Q are obtained at moderate autaptic coupling intensities τ. Moreover, with the increase of autaptic coupling intensity τ, autaptic time delay-induced peaks become more abruptly and narrow but the height of peaks increases.This suggests that autapse may play active roles to effectively improve the efficiency and time precision of signal transmission. In the case of autapse with time-periodic coupling intensity, when autaptic coupling intensity oscillates with appropriate speed (neither too fast nor slowly), autapse cannot significantly improve the efficiency of signal transmission, but can significantly broaden the valid ranges of parameters, implying that the plasticity of autapse may improve the adaptive capacity of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yilmaz et al., Physica A 392, 5735 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Caporale, Y. Dan, Annu. Rev. Neurosci. 31, 25 (2008)

    Article  Google Scholar 

  3. H. Markram et al., Science 275, 213 (1997)

    Article  Google Scholar 

  4. L. Wang, Y. Gong, X. Lin, Chaos Solitons Fractals 45, 131 (2012)

    Article  ADS  Google Scholar 

  5. X. Lin, Y. Gong, L. Wang, Chaos 21, 309 (2011)

    Article  Google Scholar 

  6. A. Bî rzu, K. Krischer, Chaos 20, 043114 (2010)

    Article  ADS  Google Scholar 

  7. E. Yilmaz, V. Baysal, M. Ozer, Phys. Rev. A 379, 1594 (2015)

    Google Scholar 

  8. B. Xu et al., Eur. Phys. J. B 85, 299 (2012)

    Article  ADS  Google Scholar 

  9. J. Shi, M. Luo, C. Huang, Cogn. Neurodyn. 11, 383 (2017)

    Article  Google Scholar 

  10. B. Xu et al., Nonlinear Dyn. 72, 79 (2013)

    Article  Google Scholar 

  11. d.L.H. Van, E.M. Glaser, Brain Res. 48, 355 (1972)

    Article  Google Scholar 

  12. E. Yilmaz et al., Sci. Rep. 6, 30914 (2016)

    Article  ADS  Google Scholar 

  13. A.B. Karabelasa, D.P. Purruraa, Brain Res. 200, 467 (1980)

    Article  Google Scholar 

  14. G. Tamás, E.H. Buhl, P. Somogyi, J. Neurosci. 17, 6352 (1997)

    Article  Google Scholar 

  15. J. Lü bke et al., J. Neuros. 16, 3209 (1996)

    Article  Google Scholar 

  16. Y. Li et al., Phys. Rev. E 82, 061907 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.L. Guo et al., Complexity 2017, 4631602 (2017)

    Google Scholar 

  18. Y. Xu et al., Sci. Rep. 7, 43452 (2017)

    Article  ADS  Google Scholar 

  19. Y. Yao et al., Physica A 492, 1247 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Ma etal., Neurocomputing 167, 378 (2015)

    Article  Google Scholar 

  21. H.T. Wang et al., Commun. Nonlinear. Sci. Numer. Simul. 19, 3242 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Wang et al., Complexity 2017, 5436737 (2017)

    Google Scholar 

  23. J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)

    Article  Google Scholar 

  24. E. Yilmaz, M. Ozer, Physica A 421, 455 (2015)

    Article  Google Scholar 

  25. L.J. Yang et al., Phys. Rev. E 86, 016209 (2012)

    Article  ADS  Google Scholar 

  26. C. Yao, M. Zhan, Phys. Rev. E 81, 061129 (2010)

    Article  ADS  Google Scholar 

  27. Y. Yao, J. Ma, Cogn. Neurodyn. 12, 343 (2018)

    Article  Google Scholar 

  28. Y. Yao, M. Yi, D. Hou, Int. J. Mod. Phys. B 31, 1750204 (2017)

    Article  ADS  Google Scholar 

  29. Y. Yao et al., Complexity 2018, 5632650 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Ma, J. Signal transmission by autapse with constant or time-periodic coupling intensity in the FitzHugh–Nagumo neuron. Eur. Phys. J. Spec. Top. 227, 757–766 (2018). https://doi.org/10.1140/epjst/e2018-800008-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800008-2

Navigation