Skip to main content
Log in

Cosine chaotification technique to enhance chaos and complexity of discrete systems

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We hereby propose a cosine chaotification technique (CCT), which has simple structure, complex nonlinear dynamics and bounded orbits, to enhance the chaotic behavior as well as the complexity performance of discrete chaotic systems. To demonstrate the effectiveness of the CCT, we apply the CCT on three different examples, including one-dimensional (1D) logistic map, two population chaotic maps, and the three-dimensional (3D) Hénon map. Performance evaluations prove that the CCT can change the chaotic and non-chaotic states of these maps to chaotic or hyperchaotic state with higher complexity performance. Besides that, the generated maps by CCT have wider chaotic and hyperchaotic behaviors than the existing chaotic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wiggins, in Introduction to applied nonlinear dynamical systems and chaos (Springer Science & Business Media, 2003), Vol. 2

  2. S. Banerjee, S. Jeeva Sathya Theesar, J. Kurths, Chaos 23, 013118 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Banerjee, S.K. Palit, S. Mukherjee, M.R.K. Ariffin, L. Rondoni, Chaos 26, 033105 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Natiq, N.M.G. Al-Saidi, M.R.M. Said, A. Kilicman, Eur. Phys. J. Plus 133, 6 (2018)

    Article  Google Scholar 

  5. H. Natiq, M. Said, N. Al-Saidi, A. Kilicman, Entropy 21, 34 (2019)

    Article  ADS  Google Scholar 

  6. O.E. Rössler, Phys. Lett. A 57, 397 (1976)

    Article  ADS  Google Scholar 

  7. J.C. Sprott, Phys. Rev. E 50, R647 (1994)

    Article  ADS  Google Scholar 

  8. J. Lü, G. Chen, Int. J. Bifurc. Chaos 12, 659 (2002)

    Article  Google Scholar 

  9. S. He, K. Sun, S. Banerjee, Eur. Phys. J. Plus 131, 254 (2016)

    Article  Google Scholar 

  10. L. Rondoni, M.R.K. Ariffin, R. Varatharajoo, S. Mukherjee, S.K. Palit, S. Banerjee, Opt. Commun. 387, 257 (2017)

    Article  ADS  Google Scholar 

  11. S. He, S. Banerjee, Physica A 490, 366 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Natiq, S. Banerjee, S. He, M.R.M. Said, A. Kilicman, Chaos Solitons Fractals 114, 506 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Natiq, M.R.M. Said, M.R.K. Ariffin, S. He, L. Rondoni, S. Banerjee, Eur. Phys. J.Plus 133, 557 (2018)

    Article  Google Scholar 

  14. H. Natiq, S. Banerjee, M.R.K. Ariffin, M.R.M. Said, Chaos 29, 011103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Lin, M. Shen, H.C. So, C. Chang, IEEE Trans. Signal Process. 60, 4426 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Li, M. Han, J. Wang, IEEE Trans. Neural Netw. Learn. Syst. 23, 787 (2012)

    Article  Google Scholar 

  17. C. Li, S. Li, M. Asim, J. Nunez, G. Alvarez, G. Chen, Image Vis. Comput. 27, 1371 (2009)

    Article  Google Scholar 

  18. Z. Hua, Y. Zhou, C.M. Pun, C.P. Chen, Inf. Sci. 297, 80 (2015)

    Article  Google Scholar 

  19. Y. Zhang, P. Shi, C.C. Lim, H. Zhu, J. Hu, Y. Zeng, J. Frank. Inst. 354, 5519 (2017)

    Article  Google Scholar 

  20. H. Zhang, G. Chen, Int. J. Bifurc. Chaos 14, 3317 (2004)

    Article  Google Scholar 

  21. G. Chen, Y. Shi, Philos. Trans. R. Soc. Lond. A 364, 2433 (2006)

    Article  ADS  Google Scholar 

  22. Y. Zhou, Z. Hua, C.M. Pun, C.L.P. Chen, IEEE Trans. Cybern. 45, 2001 (2015)

    Article  Google Scholar 

  23. Z. Hua, Y. Zhou. IEEE Trans. Cybern. 46, 3330 (2016)

    Article  Google Scholar 

  24. Z. Hua, B. Zhou, Y. Zhou, IEEE Trans. Ind. Electr. 65, 2557 (2018)

    Article  Google Scholar 

  25. F.R. Marotto, Math. Biosci. 58, 123 (1982)

    Article  MathSciNet  Google Scholar 

  26. G. Baier, M. Klein, Phys. Lett. A 151, 281 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  27. F. Hubertus, F.E. Udwadia, W. Proskurowski, Physica D 101, 1 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  28. S.M. Pincus, Proc. Natl. Acad. Sci. 88, 2297 (1991)

    Article  ADS  Google Scholar 

  29. J.S. Richman, J. Randall Moorman, Am. J. Physiol. Heart Circ. Physiol. 278, H2039 (2000)

    Article  Google Scholar 

  30. W. Chen, J. Zhuang, W. Yu, Z. Wang, Med. Eng. Phys. 31, 61 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santo Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natiq, H., Banerjee, S. & Said, M.R.M. Cosine chaotification technique to enhance chaos and complexity of discrete systems. Eur. Phys. J. Spec. Top. 228, 185–194 (2019). https://doi.org/10.1140/epjst/e2019-800206-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800206-9

Navigation