skip to main content
10.1145/1028523.1028557acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

Motion map: image-based retrieval and segmentation of motion data

Published:27 August 2004Publication History

ABSTRACT

Recent proliferation of motion capture systems enables motion data to be saved as an archive system, and the data are usually extracted by selecting an appropriate file by its name or annotation explaining the content of motions. Such semantic-based retrieval, however, is not suited to unstructured files that include many types of elemental motions, due to the difficulty in giving comprehensible annotations. Moreover, expected motion clips are often included as a part of entire sequences, and the data therefore should be manually clipped using some authoring tools.

This paper proposes an image-based user interface for retrieving motion data using a self-organizing map for supplying recognizable icons of postures. The postures are used as keys for retrieval, and the desirable segments of the motion data can be accurately extracted by specifying and ending postures. The number of possible motion segments is flexibly controlled by changing the scope of postures used as the keys.

Skip Supplemental Material Section

Supplemental Material

p259-sakamoto.mpeg

mpeg

27.5 MB

References

  1. {AFO03} Arikan O., Forsyth D. A., O'Brien J. F.: Motion synthesis from annotations. ACM Transactions on Graphics 22, 3 (2003), 402--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {BH00} Brand M., Hertzmann A.: Style machines. In Proceedings of ACM SIGGRAPH 2000 (2000), pp. 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {CMS99} Card S. K., MacKinlay J. D., Shneiderman B.: Readings in Information Visualization Using Vision to Think. Morgan Kaufmann Publishers, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {DAC*03} Davis J., Agrawala M., Chuang E., Popovic Z., Salesin D.: A sketching interface for articulated figure animation. In Symposium on Computer Animation 03 (2003), pp. 320--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {dOL03} De Olivera M. C. F., Levkowitz H.: From visual data exploration to visual data mining: A survey. IEEE Transaction on Visualization and Computer Graphics 9, 3 (2003), 378--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {EP02} Elliman D., Pulido J.: Visualizing ontology components through self-organizing maps. In Proc. of Sixth International Conference on Information Visualization (IV'02) (2002), pp. 434--438.Google ScholarGoogle ScholarCross RefCross Ref
  7. {HB92} Hummel J. E., Biederman I.: Dynamic binding in a neural network for shape recognition. Psychological Review 99, 3 (1992), 480--517.Google ScholarGoogle ScholarCross RefCross Ref
  8. {HMM00} Herman I., Melancon G., Marshall M. S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6, 1 (2000), 24--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {ITW01} Irani P., Tingley M., Ware C.: Using perceptual syntax to enhance semantic content in diagrams. IEEE Computer Graphics & Applications 21, 5 (2001), 76--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {KG04} Kovar L., Gleicher M.: Automated extraction and parameterization of motions in large data set. ACM Transactions on Graphics (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {KGP02} Kovar L., Gleicher M., Pighin F.: Motion graphs. ACM Transactions on Graphics 21, 3 (2002), 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {Koh88} Kohonen T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43 (1988), 59--69.Google ScholarGoogle Scholar
  13. {Koh90} Kohonen T.: The self-organizing map. Proceedings IEEE 78, 9 (1990), 1464--1480.Google ScholarGoogle Scholar
  14. {Koh01} Kohonen T.: Self-Organizing Maps. Springer, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {LCR*02} Lee J., Chai J., Reitsma P. S. A., Hodgins J. K., Pollard N. S.: Interactive control of avatars animated with human motion data. ACM Transactions on Graphics 21, 3 (2002), 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {Mac67} MacQueen J.: Some methods for classification and analysis of multivariate data. In 5th Berkeley Symposium (1967), vol. 1, pp. 281--297.Google ScholarGoogle Scholar
  17. {Mea97} Marks J., et al.: Design galleries: A general approach to setting parameters for computer graphics and animation. In Proceedings of SIGGRAPH 97 (1997), pp. 389--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {RCB98} Rose C., Cohen M. F., Bodenheimer B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics & Applications 18, 5 (1998), 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {RI96} Rushall D., Ilgen M.: Depict: Documents evaluated as pictures. visualizing information using context vectors and self-organizing maps. In IEEE Symposium on Information Visualization (INFOVIS'96) (1996), pp. 100--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {RS00} Roweis S. T., Saul L. K.: Nonlinear dimensionality reduction by locally linear embedding. SCIENCE 290, 22 (2000), 2323--2326.Google ScholarGoogle ScholarCross RefCross Ref
  21. {Spe01} Spence R.: Information Visualization. Addison-Wesley, 2001.Google ScholarGoogle Scholar
  22. {TdSL00} Tenenbaum J. B., De Silva V., Langford J. C.: A global geometric framework for nonlinear dimensionality reduction. SCIENCE 290, 22 (2000), 2319--2322.Google ScholarGoogle Scholar
  23. {TH00} Tanco L. M., Hilton A.: Realistic synthesis of novel human movements from a database of motion capture examples. In Workshop on Human Motion (HUMO 2000) (2000), pp. 137--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {UAT95} Unuma M., Anjyo K., Takeuchi R.: Fourier principles for emotion-based human figure animation. In Proceedings of SIGGRAPH 95 (1995), pp. 91--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. {WH97} Wiley D., Hahn J.: Interpolation synthesis of articulated figure motion. IEEE Computer Graphics & Applications 17, 6 (1997), 39--45. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Motion map: image-based retrieval and segmentation of motion data

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation
            August 2004
            388 pages
            ISBN:3905673142

            Publisher

            Eurographics Association

            Goslar, Germany

            Publication History

            • Published: 27 August 2004

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate183of487submissions,38%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader