skip to main content
article

CrimeNet explorer: a framework for criminal network knowledge discovery

Published:01 April 2005Publication History
Skip Abstract Section

Abstract

Knowledge about the structure and organization of criminal networks is important for both crime investigation and the development of effective strategies to prevent crimes. However, except for network visualization, criminal network analysis remains primarily a manual process. Existing tools do not provide advanced structural analysis techniques that allow extraction of network knowledge from large volumes of criminal-justice data. To help law enforcement and intelligence agencies discover criminal network knowledge efficiently and effectively, in this research we proposed a framework for automated network analysis and visualization. The framework included four stages: network creation, network partition, structural analysis, and network visualization. Based upon it, we have developed a system called CrimeNet Explorer that incorporates several advanced techniques: a concept space approach, hierarchical clustering, social network analysis methods, and multidimensional scaling. Results from controlled experiments involving student subjects demonstrated that our system could achieve higher clustering recall and precision than did untrained subjects when detecting subgroups from criminal networks. Moreover, subjects identified central members and interaction patterns between groups significantly faster with the help of structural analysis functionality than with only visualization functionality. No significant gain in effectiveness was present, however. Our domain experts also reported that they believed CrimeNet Explorer could be very useful in crime investigation.

References

  1. Aldenderfer, M. S. and Blashfield R. K. 1984. Cluster Analysis. Sage Publications, Beverly Hills, CA.Google ScholarGoogle Scholar
  2. Anderson, T., Arbetter, L., Benawides, A., and Longmore-Etheridge, A. 1994. Security works. Sec. Manage. 38, 17--20.Google ScholarGoogle Scholar
  3. Arabie, P., Boorman, S. A., and Levitt, P. R. 1978. Constructing blockmodels: How and why. J. Math. Psych. 17, 21--63.Google ScholarGoogle Scholar
  4. Baker, W. E. and Faulkner R. R. 1993. The social organization of conspiracy: Illegal networks in the heavy electrical equipment industry. Amer. Soc. Rev. 58, 837--860.Google ScholarGoogle Scholar
  5. Berkowitz, S. D. 1982. An Introduction to Structural Analysis: The Network Approach to Social Research. Butterworth, Toronto, Ont., Canada.Google ScholarGoogle Scholar
  6. Breiger, R. L. 2004. The analysis of social networks. In Handbook of Data Analysis, M. A. Hardy and A. Bryman, Eds. Sage Publications, London, U.K. 505--526.Google ScholarGoogle Scholar
  7. Breiger, R. L., Boorman, S. A., and Arabie, P. 1975. An algorithm for clustering relational data, with applications to social network analysis and comparison with multidimensional scaling. J. Math. Psych. 12, 328--383.Google ScholarGoogle Scholar
  8. Burt, R. S. 1976. Positions in networks. Soc. Forces 55, 93--122.Google ScholarGoogle Scholar
  9. Burt, R. S. 1980. Models of network structure. Ann. Rev. Soc. 6, 79--141.Google ScholarGoogle Scholar
  10. Chen, H. and Lynch, K. J. 1992. Automatic construction of networks of concepts characterizing document databases. IEEE Trans. Syst. Man Cybernet. 22, 885--902.Google ScholarGoogle Scholar
  11. Chen, H., Zeng, D., Atabakhsh, H., Wyzga, W., and Schroeder, J. 2003. Coplink: Managing law enforcement data and knowledge. Commun. ACM 46, 28--34. Google ScholarGoogle Scholar
  12. Cook, J. S. and Cook, L. L. 2003. Social, ethical and legal issues of data mining. In Data Mining: Opportunities and Challenges, J. Wang, Ed. Idea Group Publishing, Hershey, PA, 395--420. Google ScholarGoogle Scholar
  13. Dantzig, G. 1960. On the shortest route through a network. Manage. Sci. 6, 187--190.Google ScholarGoogle Scholar
  14. Davidson, R. and Harel, D. 1996. Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15, 301--331. Google ScholarGoogle Scholar
  15. Day, W. H. E. and Edelsbrunner, H. 1984. Efficient algorithms for agglomerative hierarchical clustering methods. J. Class. 1, 7--24.Google ScholarGoogle Scholar
  16. Defays, D. 1977. An efficient algorithm for a complete link method. Comput. J. 20, 364--366.Google ScholarGoogle Scholar
  17. Dijkstra, E. 1959. A note on two problems in connection with graphs. Numer. Math. 1, 269--271.Google ScholarGoogle Scholar
  18. Evan, W. M. 1972. An organization-set model of interorganizational relations. In Interorganizational Decision-Making, M. Tuite, R. Chisholm, and M. Radnor, Eds. Aldine Publishers, Chicago, IL, 181--200.Google ScholarGoogle Scholar
  19. Floyd, R. W. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 345--370. Google ScholarGoogle Scholar
  20. Freeman, L. 1979. Centrality in social networks: Conceptual clarification. Soc. Netw. 1, 215--239.Google ScholarGoogle Scholar
  21. Freeman, L. 2000. Visualizing social networks. J. Soc. Struct. 1. (Electronic journal; go to http://www.heinz.cmu.edu/project/INSNA/joss/index1.html.)Google ScholarGoogle Scholar
  22. Galaskiewicz, J. and Krohn, K. 1984. Positions, roles, and dependencies in a community interorganization system. Sociolog. Quart. 25, 527--550.Google ScholarGoogle Scholar
  23. Garton, L., Haythornthwaite, C., and Wellman, B. 1999. Studying online social networks. In Doing Internet Research, S. Jones, Ed. Sage Publications, London, UK, 75--105.Google ScholarGoogle Scholar
  24. Gibson, D., Kleinberg, J. M., and Ragha-Van, P. 1998. Inferring Web communities from link topology. In Proceedings of the 9th ACM Conference on Hypertext and Hypermedia (Pittsburgh, PA, June), R. Akscyn, Ed. ACM Press, New York, NY, 225--234. Google ScholarGoogle Scholar
  25. Goldberg, H. G. and Senator, T. E. 1998. Restructuring databases for knowledge discovery by consolidation and link formation. In Proceedings of 1998 AAAI Fall Symposium on Artificial Intelligence and Link Analysis (Orlando, FL, Oct.). AAAI Press, Menlo Park, CA.Google ScholarGoogle Scholar
  26. Harper, W. R. and Harris, D. H. 1975. The application of link analysis to police intelligence. Hum. Fact. 17, 157--164.Google ScholarGoogle Scholar
  27. Hauck, R. V., Atabakhsh, H., Ongvasith, P., Gupta, H., and Chen, H. 2002. Using Coplink to analyze criminal-justice data. IEEE Comput. 35, 30--37. Google ScholarGoogle Scholar
  28. Jain, A. K. and Dubes, R. C. 1998. Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River, NJ. Google ScholarGoogle Scholar
  29. Jain, A. K., Murty, M. N., and Flynn, P. J. 1999. Data clustering: A review. ACM Comput. Surv. 31, 264--323. Google ScholarGoogle Scholar
  30. Johnson, S. C. 1967. Hierarchical clustering schemes. Psychometrika 32, 241--254.Google ScholarGoogle Scholar
  31. Jordan, P. W. 1998. An Introduction to Usability, Taylor and Francis, Bristol, PA.Google ScholarGoogle Scholar
  32. King, B. 1967. Step-wise clustering procedures. J. Amer. Statist. Assoc. 62, 86--101.Google ScholarGoogle Scholar
  33. Kleinberg, J. M. 1999. Authoritative sources in a hyperlinked environment. J. Assoc. Comput. Mach. 46, 604--632. Google ScholarGoogle Scholar
  34. Klerks, P. 2001. The network paradigm applied to criminal organizations: Theoretical nitpicking or a relevant doctrine for investigators? Recent developments in the Netherlands. Connections 24, 53--65.Google ScholarGoogle Scholar
  35. Krebs, V. E. 2001. Mapping networks of terrorist cells. Connections 24, 43--52.Google ScholarGoogle Scholar
  36. Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115--128.Google ScholarGoogle Scholar
  37. Kruskal, J. B. and Wish, M. 1978. Multidimensional Scaling. Sage, Beverly Hills, CA.Google ScholarGoogle Scholar
  38. Lance, G. N. and Williams, W. T. 1967. A general theory of classificatory sorting strategies: II. Clustering systems. Comput. J. 10, 271--277.Google ScholarGoogle Scholar
  39. Lorrain, F. P. and White, H. C. 1971. Structural equivalence of individuals in social networks. J. Math. Soc. 1, 49--80.Google ScholarGoogle Scholar
  40. McAndrew, D. 1999. The structural analysis of criminal networks. In The Social Psychology of Crime: Groups, Teams, and Networks. D. Canter and L. Alison, Eds. Dartmouth Publishing, Aldershot, UK, 53--94.Google ScholarGoogle Scholar
  41. Murtagh, F. 1984. A survey of recent advances in hierarchical clustering algorithms which use cluster centers. Comput. J. 26, 354--359.Google ScholarGoogle Scholar
  42. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C, 2nd ed. Cambridge University Press, Cambridge, UK. Google ScholarGoogle Scholar
  43. Ronfeldt, D. and Arquilla, J. 2001. What next for networks and netwars? In Networks and Netwars: The Future of Terror, Crime, and Militancy, J. Arquilla and D. Ronfeldt, Eds. Rand Press, Santa Monica, CA, 311--361.Google ScholarGoogle Scholar
  44. Roussinov, D. G. and Chen, H. 1999. Document clustering for electronic meetings: An experimental comparison of two techniques. Decis. Supp. Syst. 27, 67--79. Google ScholarGoogle Scholar
  45. Saether, M. and Canter, D. V. 2001. A structural analysis of fraud and armed robbery networks in Norway. In Proceedings of the 6th International Investigative Psychology Conference (Liverpool, UK, Jan.).Google ScholarGoogle Scholar
  46. Sahami, M., Yusufali, S., and Baldonado, Q. W. 1998. SONIA: A service for organizing networked information autonomously. In Proceedings of the 3rd ACM International Conference on Digital Libraries (Pittsburgh, PA, June). Google ScholarGoogle Scholar
  47. Scott, J. 1991. Social Network Analysis. Sage Publications, London, UK.Google ScholarGoogle Scholar
  48. Sibson, R. 1973. Slink: An optimally efficient algorithm for the single-line cluster method. Comput. J. 16, 30--45.Google ScholarGoogle Scholar
  49. Sneath, P. H. A. 1957. The application of computers to taxonomy. J. Gen. Microbiol. 17, 201--226.Google ScholarGoogle Scholar
  50. Sparrow, M. K. 1991. The application of network analysis to criminal intelligence: An assessment of the prospects. Soc. Netw. 13, 251--274.Google ScholarGoogle Scholar
  51. Torgerson, W. S. 1952. Multidimensional scaling: Theory and method. Psychometrika 17, 401--419.Google ScholarGoogle Scholar
  52. Voorhees, E. M. 1986. Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Inform. Process. Manage. 22, 465--476. Google ScholarGoogle Scholar
  53. Ward Jr., J. H. 1963. Hierarchical grouping to optimize an objective function. J. Amer. Statist. Assoc. 58, 236--244.Google ScholarGoogle Scholar
  54. Wasserman, S. and Faust, K. 1994. Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  55. Wellman, B. 1988. Structural analysis: From method and metaphor to theory and substance. In Social structures: A network approach, B. Wellman and S. D. Berkowitz, Eds. Cambridge University Press, Cambridge, UK, 19--61.Google ScholarGoogle Scholar
  56. White, H. C., Boorman, S. A., and Breiger, R. L. 1976. Social structure from multiple networks: I. Blockmodels of roles and positions. Amer. J. Soc. 81, 730--780.Google ScholarGoogle Scholar
  57. Young, F. W. 1987. Multidimensional Scaling: History, Theory, and Applications. Lawrence Erlbaum Associates, Hillsdale, NJ.Google ScholarGoogle Scholar

Index Terms

  1. CrimeNet explorer: a framework for criminal network knowledge discovery

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader