skip to main content
article

Analysis of the contention access period of IEEE 802.15.4 MAC

Published:01 March 2007Publication History
Skip Abstract Section

Abstract

The recent ratification of IEEE 802.15.4 PHY-MAC specifications for low-rate wireless personal area networks represents a significant milestone in promoting deployment of wireless sensor networks (WSNs) for a variety of commercial uses. The 15.4 specifications specifically target wireless networking among low-rate, low-power and low-cost devices that is expected to be a key market segment for a large number of WSN applications. In this article, we first analyze the performance of the contention access period specified in the IEEE 802.15.4 standard in terms of throughput and energy consumption. This analysis is facilitated by a modeling of the contention access period as nonpersistent CSMA with backoff. We show that, in certain applications in which having an inactive period in the superframe may not be desirable due to delay constraints, shutting down the radio between transmissions provides significant savings in power without significantly compromising the throughput. We also propose and analyze the performance of a modification to the specification which could be used for applications in which MAC-level acknowledgements are not used. Extensive ns-2 simulations are used to verify the analysis.

References

  1. Bianchi, G. 2000. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Comm. 18, 535--547. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bougard, B., Catthoor, F., Daly, D., Chandrakasan, A., and Dehaene, W. 2005. Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: Modeling and improvement perspectives. IEEE Design Automation and Test in Europe (DATE '05). 196--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bruno, R., Conti, M., and Gregori, E. 2002. Optimization of efficiency and energy consumption in p-persistent CSMA-based wireless LANs. IEEE Trans. Mobile Comput. 1, 10--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Calì, F., Conti, M., and Gregori, E. 2000. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. Network. 8, 785--799. Google ScholarGoogle ScholarCross RefCross Ref
  5. Callaway, E. Motorola Labs. Private Communication.Google ScholarGoogle Scholar
  6. Callaway, E., Gorday, P., Hester, L., Gutierrez, J., Naeve, M., Heile, B., and Bahl, V. 2002. Home networking with IEEE 802.15.4: a developing standard for low-rate wireless personal area networks. IEEE Comm. Mag. 40, 70--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chipcon. 2004. 2.4 GHz IEEE 802.15.4/Zigbee-ready RF Transceiver. http://www.chipcon.com/files/CC2420_Data_sheet_1_2.pdf.Google ScholarGoogle Scholar
  8. Chong, C. Y. and Kumar, S. P. 2003. Sensor networks: Evolution, opportunities and challenges. In Proceedings of the IEEE. vol. 91, 1247--1256.Google ScholarGoogle ScholarCross RefCross Ref
  9. Crossbow Technology Inc. 2004. Micaz wireless measurement system. http://www.xbow.com.Google ScholarGoogle Scholar
  10. Culler, D., Estrin, D., and Srivastava, M. 2004. Overview of sensor networks. IEEE Comput. 37, 41--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dust Networks. 2005. M2020 mote datasheet. http://http://www.dust-inc.com/products/main.shtml.Google ScholarGoogle Scholar
  12. El-Hoiydi, A. and Decotignie, J.-D. 2004. WiseMAC: An ultra low power MAC protocol for the downlink of infrastructure wireless sensor networks. Proceedings of the IEEE Symposium on Computers and Communications (ISCC '04). 1, 244--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Feeney, L. M. and Nilsson, M. 2001. Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In IEEE INFOCOM. 1548--1557.Google ScholarGoogle Scholar
  14. Golmie, N., Cypher, D., and Rebala, O. 2005. Performance analysis of low rate wireless technologies for medical applications. Comput. Comm. 28, 1266--1275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. IEEE 802.15.4. 2003. Part 15.4: Wireless medium access control and physical layer specifications for low rate wireless personal area networks. Tech. rep. ANSI/IEEE Standard 802.15.4. (Sept).Google ScholarGoogle Scholar
  16. Jovanov, E., Milenkovic, A., Otto, C., and de Groen, P. 2005. A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J. Neuroengin. Rehabilit. 2.Google ScholarGoogle Scholar
  17. Kleinrock, L. and Tobagi, F. A. 1975. Packet switching in radio channels: Part I-carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. Comm. 23, 1400--1416.Google ScholarGoogle ScholarCross RefCross Ref
  18. Leibnitz, K., Wakamiya, N., and Murata, M. 2005. Modeling of IEEE 802.15.4 in a cluster of synchronized sensor nodes. In 19th International Teletraffic Congress. 1345--1354.Google ScholarGoogle Scholar
  19. Lu, G., Krishnamachari, B., and Raghavendra, C. S. 2004. Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks. IEEE International Performance Computing and Communications Conference (IPCCC '04). 701--706.Google ScholarGoogle Scholar
  20. Mišić, J., Shafi, S., and Mišić, V. B. 2006. Performance of a beacon enabled ieee 802.15.4 cluster with downlink and uplink traffic. IEEE Trans. Parall. Distrib. Syst. 17, 361--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Park, T. R., Kim, T. H., Choi, J. Y., Choi, S., and Kwon, W. H. 2005. Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. Electron. Lett. 41, 1017--1019.Google ScholarGoogle ScholarCross RefCross Ref
  22. Polastre, J., Szewczyk, R., and Culler, D. 2005. Telos: Enabling ultra-low power wireless research. International Conference on Information Processing in Sensor Networks (IPSN/SPOTS). 364--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., der Perre, L. V., Cathoor, F., Moerman, I., Bahai, A., and Varaiya, P. 2005. Performance analysis of slotted IEEE 802.15.4 medium access layer. Tech. rep., DAWN Project. (Sept.) http://www.soe.ucsc.edu/research/ccrg/DAWN/papers/ZigBee_MACvPV.pdf.Google ScholarGoogle Scholar
  24. Rabaey, J. M., Ammer, M. J., da Silva, J. L., Patel, D., and Roundy, S. 2000. Picoradio supports ad hoc ultra-low power wireless networking. IEEE Comput. 33, 42--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rodoplu, V. and Meng, T. 2002. Bits-per-Joule capacity of energy-limited wireless ad hoc networks. IEEE Globecom 1, 17--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ross, S. M. 2000. Introduction to Probability Models 7 Ed. Academic Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Roundy, S., Wright, P., and Rabaey, J. 2004. Energy Scavenging for Wireless Sensor Networks with Special Focus on Vibration. Kluwer Scademic Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shih, E., Cho, S., Lee, F. S., Calhoun, B. H., and Chandrakasan, A. P. 2004. Design considerations for energy-efficient radios in wireless microsensor networks. J. VLSI Signal Process.-Syst. Signal, Image, Video Tech. 37, 77--94. Google ScholarGoogle ScholarCross RefCross Ref
  29. Takagi, H. and Kleinrock, L. 1984. Optimal transmission range for randomly distributed packet radio terminals. IEEE Trans. on Comm. 32, 3, 246--257.Google ScholarGoogle ScholarCross RefCross Ref
  30. Timmons, N. F. and Scanlon, W. G. 2004. Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. IEEE Annual Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON '04). 1266--1275.Google ScholarGoogle Scholar
  31. Wu, L. and Varshney, P. 1999. Performance analysis of CSMA and BTMA protocols in multihop networks (I). Single channel case. Inform. Sci. 120, 159--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ye, W., Heidemann, J., and Estrin, D. 2004. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE Trans. on Network. 12, 3, 493--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zheng, J. and Lee, M. J. 2004a. A Comprehensive Performance Study of IEEE 802.15.4. IEEE Press.Google ScholarGoogle Scholar
  34. Zheng, J. and Lee, M. J. 2004b. Will IEEE 802.15.4 make ubiquitous networking a reality?: A discussion on a potential low power low bit rate standard. IEEE Comm. Mag. 42, 140--146. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Analysis of the contention access period of IEEE 802.15.4 MAC

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader