skip to main content
article

Global non-rigid alignment of 3-D scans

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

A key challenge in reconstructing high-quality 3D scans is registering data from different viewpoints. Existing global (multiview) alignment algorithms are restricted to rigid-body transformations, and cannot adequately handle non-rigid warps frequently present in real-world datasets. Moreover, algorithms that can compensate for such warps between pairs of scans do not easily generalize to the multiview case. We present an algorithm for obtaining a globally optimal alignment of multiple overlapping datasets in the presence of low-frequency non-rigid deformations, such as those caused by device nonlinearities or calibration error. The process first obtains sparse correspondences between views using a locally weighted, stability-guaranteeing variant of iterative closest points (ICP). Global positions for feature points are found using a relaxation method, and the scans are warped to their final positions using thin-plate splines. Our framework efficiently handles large datasets---thousands of scans comprising hundreds of millions of samples---for both rigid and non-rigid alignment, with the non-rigid case requiring little overhead beyond rigid-body alignment. We demonstrate that, relative to rigid-body registration, it improves the quality of alignment and better preserves detail in 3D datasets from a variety of scanners exhibiting non-rigid distortion.

Skip Supplemental Material Section

Supplemental Material

pps021.mp4

mp4

51.1 MB

References

  1. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: Reconstruction and parameterization from range scans. ACM Trans. Graphics (Proc. SIGGRAPH) 22, 3, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Benjemaa, R., and Schmitt, F. 1998. A solution for the registration of multiple 3d point sets using unit quaternions. In Proc. ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bergevin, R., Soucy, M., Gagnon, H., and Laurendeau, D. 1996. Towards a general multi-view registration technique. IEEE Trans. PAMI 18, 5, 540--547. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bernardini, F., Rushmeier, H., Martin, I. M., Mittle-Man, J., and Taubin, G. 2002. Building a digital model of Michelangelo's Florentine Pietà. IEEE Computer Graphics and Applications 22, 1, 59--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-D shapes. IEEE Trans. PAMI 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. PAMI 11, 6 (June), 567 -- 585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brown, B., and Rusinkiewicz, S. 2004. Non-rigid range-scan alignment using thin-plate splines. In Proc. 3DPVT. Google ScholarGoogle ScholarCross RefCross Ref
  8. Chen, Y., and Medioni, G. 1992. Object modelling by registration of multiple range images. Image and Vision Computing 10, 3, 145--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chui, H., and Rangarajan, A. 2003. A new point matching algorithm for non-rigid registration. CVIU 89, 2--3 (February-March), 114--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Curless, B., and Levoy, M. 1996. A volumetric method for building complex models from range images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Duchon, J. 1977. Splines minimizing rotation-invariant seminorms in Sobolev spaces. In Constructive Theory of Functions of Several Variables, Springer-Verlag, Berlin, 85--100.Google ScholarGoogle Scholar
  12. Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. 2003. Geometrically stable sampling for the ICP algorithm. In Proc. 3DIM.Google ScholarGoogle Scholar
  13. Hähnel, D., Thrun, S., and Burgard, W. 2003. An extension of the ICP algorithm for modeling nonrigid objects with mobile robots. In Proc. IJCAI, IJCAI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., and Pottmann, H. 2006. Reassembling fractured objects by geometric matching. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, ACM Press, New York, NY, USA, 569--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ikemoto, L., Gelfand, N., and Levoy, M. 2003. A hierarchical method for aligning warped meshes. In Proc. 3DIM.Google ScholarGoogle Scholar
  16. Jian, B., and Vemuri, B. 2005. A robust algorithm for point set registration using mixture of gaussians. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Krishnan, S., Lee, P., Moore, J., and Venkatasubramanian, S. 2005. Simultaneous registration of multiple 3d point sets via optimization on a manifold. In Proc. Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The Digital Michelangelo Project: 3-D scanning of large statues. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, X., and Guskov, I. 2005. Multiscale features for approximate alignment of point-based surfaces. In Symposium on Geometry Processing, 217--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Neugebauer, P. J. 1997. Geometrical cloning of 3D objects via simultaneous registration of multiple range images. In Proc. SMA, IEEE Computer Society, 130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pulli, K. 1999. Multiview registration for large data sets. In Proc. 3DIM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rusinkiewicz, S. 2001. Efficient variants of the ICP algorithm. In Proc. 3DIM.Google ScholarGoogle ScholarCross RefCross Ref
  24. Shum, H.-Y, and Szeliski, R. 2000. Construction of panoramic mosaics with global and local alignment. International Journal of Computer Vision 36, 2, 101--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, ACM Press, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wahba, G. 1990. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia, PA, ch. 2.4.Google ScholarGoogle Scholar
  27. Wen, G., Zhu, D., Xia, S., and Wang, Z. 2005. Total least squares fitting of point sets in m-d. In Computer Graphics International. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Williams, J., and Bennamoun, M. 2000. A multiple view 3D registration algorithm with statistical error modeling. IEICE Transactions on Information and Systems E83-D(8) (August), 1662--1670.Google ScholarGoogle Scholar
  29. Woodham, R. J. 1980. Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 1, 139--144.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Global non-rigid alignment of 3-D scans

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 26, Issue 3
                July 2007
                976 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1276377
                Issue’s Table of Contents

                Copyright © 2007 ACM

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 29 July 2007
                Published in tog Volume 26, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader