skip to main content
10.1145/1401890.1401972acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Community evolution in dynamic multi-mode networks

Published:24 August 2008Publication History

ABSTRACT

A multi-mode network typically consists of multiple heterogeneous social actors among which various types of interactions could occur. Identifying communities in a multi-mode network can help understand the structural properties of the network, address the data shortage and unbalanced problems, and assist tasks like targeted marketing and finding influential actors within or between groups. In general, a network and the membership of groups often evolve gradually. In a dynamic multi-mode network, both actor membership and interactions can evolve, which poses a challenging problem of identifying community evolution. In this work, we try to address this issue by employing the temporal information to analyze a multi-mode network. A spectral framework and its scalability issue are carefully studied. Experiments on both synthetic data and real-world large scale networks demonstrate the efficacy of our algorithm and suggest its generality in solving problems with complex relationships.

References

  1. E. Airodi, D. Blei, S. Fienberg, and E. P. Xing. Mixed membership stochastic blockmodels. JMLR, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for characterizing the evolutionary behavior of interaction graphs. In KDD, pages 913--921, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. R. Bach and M. I. Jordan. Learning spectral clustering. In NIPS, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In KDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wallace. Discovering hidden groups in communication networks. In 2nd NSF/NIJ Symposium on intelligence and Security Informatics, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Bhatia. Matrix Analysis. Springer, 1997.Google ScholarGoogle Scholar
  7. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993--1022, 2003. Google ScholarGoogle ScholarCross RefCross Ref
  8. R. Breiger, K. Carley, and P. Pattison, editors. Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers. 2003.Google ScholarGoogle Scholar
  9. D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In KDD, pages 554--560, 2006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolutionary spectral clustering by incorporating temporal smoothness. In KDD, pages 153--162, 2007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In KDD, pages 269--274, 2001 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In KDD, pages 126--135, 2006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Gao, T.-Y. Liu, X. Zheng, Q.-S. Cheng, and W.-Y. Ma. Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In KDD, pages 41--50, 2005 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Globerson, G. Chechik, F. Pereira, and N. Tishby. Euclidean embedding of co-occurrence data. J. Mach. Learn. Res., 8:2265--2295, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. G. H. Golub and C. F. V. Loan. Matrix Computation. Johns Hopkins University Press, 1996.Google ScholarGoogle Scholar
  16. M. S. Handcock, A. E. Raftery, and J. M. Tantrum. Model-based clustering for social networks. Journal Of The Royal Statistical Society Series A, 127(2), 2007.Google ScholarGoogle ScholarCross RefCross Ref
  17. C. Kemp, T. L. Griffiths, and J. B. Tenenbaum. Discoverying latent classes in relational data. Technical report, Massachusetts Institute of Technology, 2004.Google ScholarGoogle Scholar
  18. B. Klimat and Y. Yang. The enron corpus: A new dataset for email classification research. In ECML, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network. Science, 311(5757), 2006.Google ScholarGoogle Scholar
  20. M. N. Lauren Ancel Meyers and B. Pourbohloul. Predicting epidemics on directed contact networks. In Journal of Theoretical Biology, volume 240, 2006.Google ScholarGoogle Scholar
  21. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In KDD, pages 177--187, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In WWW, pages 685--694, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Long, Z. M. Zhang, X. Wú, and P. S. Yu. Spectral clustering for multi-type relational data. In ICML, pages 585--592, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Long, Z. M. Zhang, and P. S. Yu. Co-clustering by block value decomposition. In KDD, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Long, Z. M. Zhang, and P. S. Yu. A probabilistic framework for relational clustering. In KDD, pages 470--479, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. McCallum, X. Wang, and A. Corrada-Emmanuel. Topic and role discovery in social networks with experiments on enron and academic email. Journal of Artificial Intelligence Research, (0):249--272, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96(455):1077--1087, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. Palau, M. Montaner, and B. Lopez. Collaboration analysis in recommender systems using social networks. In In Eighth Intl. Workshop on Cooperative info. Agents (CIA'04), 2004.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. S. H. Peter D. Hoff, Adrian E. Raftery. Latent space approaches to social network analysis. Journal of the American Statistical Association, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  30. P. Sarkar and A. W. Moore. Dynamic social network analysis using latent space models. SIGKDD Explor. Newsl., 7(2):31--40, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Strehl and J. Ghosh. Cluster ensembles -- a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res., 3:583--617, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Wang, H. Zeng, Z. Chen, H. Lu, L. Tao, and W.-Y. Ma. Recom: reinforcement clustering of multi-type interrelated data objects. In SIGIR, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. X. Wang, N. Mohanty, and A. McCallum. Group and topic discovery from relations and their attributes. In NIPS, pages 1449--1456. 2006.Google ScholarGoogle Scholar
  35. S. Wasserman and K. Faust. Social Netwok Analysis: Methods and Applications. Cambridge University Press, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  36. H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning and data clustering. In CIKM, pages 25--32, New York, NY, USA, 2001. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. Spectral relaxation for k-means clustering. In NIPS, pages 1057--1064, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on a directed graph. In ICML, pages 1036--1043, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. Zhou, E. Manavoglu, J. Li, C. L. Giles, and H. Zha. Probabilistic models for discovering e-communities. In WWW, pages 173--182, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Community evolution in dynamic multi-mode networks

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            KDD '08: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
            August 2008
            1116 pages
            ISBN:9781605581934
            DOI:10.1145/1401890
            • General Chair:
            • Ying Li,
            • Program Chairs:
            • Bing Liu,
            • Sunita Sarawagi

            Copyright © 2008 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 24 August 2008

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            KDD '08 Paper Acceptance Rate118of593submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

            Upcoming Conference

            KDD '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader