skip to main content
research-article

Expander flows, geometric embeddings and graph partitioning

Published:17 April 2009Publication History
Skip Abstract Section

Abstract

We give a O(√log n)-approximation algorithm for the sparsest cut, edge expansion, balanced separator, and graph conductance problems. This improves the O(log n)-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in Rd, whose proof makes essential use of a phenomenon called measure concentration.

We also describe an interesting and natural “approximate certificate” for a graph's expansion, which involves embedding an n-node expander in it with appropriate dilation and congestion. We call this an expander flow.

References

  1. Agarwal, A., Charikar, M., Makarychev, K., and Makarychev, Y. 2005. o(&sqrt;log n) approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In STOC '05: Proceedings of the 34th annual ACM Symposium on Theory of Computing. ACM, New York, 573--581. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alizadeh, F. 1995. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5, 1, 13--51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alon, N. 1986. Eigenvalues and expanders. Combinatorica 6, 2, 83--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alon, N., and Milman, V. D. 1985. λ1, isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38, 1, 73--88.Google ScholarGoogle ScholarCross RefCross Ref
  5. Arora, S., Hazan, E., and Kale, S. 2004. 0(&sqrt; log n) approximation to sparsest cut in Õ(n2) time. In FOCS '04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS'04). IEEE Computer Society Press, Los Alamitos, CA, 238--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Arora, S., and Kale, S. 2007. A combinatorial, primal-dual approach to semidefinite programs. In STOC '07: Proceedings of the 39th Annual ACM Symposium on Theory of Computing. ACM, New York, 227--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Arora, S., Lee, J. R., and Naor, A. 2008. Euclidean distortion and the sparsest cut. J. Amer. Math. Soc. 21, 1, 1--21 (electronic).Google ScholarGoogle ScholarCross RefCross Ref
  8. Aumann, Y., and Rabani, Y. 1998. An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27, 1, 291--301 (electronic). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ball, K. 1997. An elementary introduction to modern convex geometry. In Flavors of Geometry. Mathematics Science Research Institute Publisher, vol. 31. Cambridge Univ. Press, Cambridge, 1--58.Google ScholarGoogle Scholar
  10. Blum, M., Karp, R., Vornberger, O., Papadimitriou, C., and Yannakakis, M. 1981. The complexity of testing whether a graph is a superconcentrator. Inf. Proc. Letters 13, 164--167.Google ScholarGoogle ScholarCross RefCross Ref
  11. Charikar, M., Hajiaghayi, M. T., Karloff, H., and Rao, S. 2006. l22 spreading metrics for vertex ordering problems. In SODA '06: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm. ACM, New York, 1018--1027. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chawla, S., Gupta, A., and Räcke, H. 2005. Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut. In SODA '05: Proceedings of the 16th annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, 102--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cheeger, J. 1970. A lower bound for the smallest eigenvalue of the Laplacian. Probl. Analysis, 195--199.Google ScholarGoogle Scholar
  14. Chung, F. R. K. 1997. Spectral graph theory. CBMS Regional Conference Series in Mathematics, vol. 92. Published for the Conference Board of the Mathematical Sciences, Washington, DC.Google ScholarGoogle Scholar
  15. Danzer, L., and Branko, G. 1962. On two problems of P. Erdos and V. L. Klee concerning convex bodies (in German). Math. Zeitschrift 79, 95--99.Google ScholarGoogle ScholarCross RefCross Ref
  16. Devanur, N., Khot, S., Saket, R., and Vishnoi, N. 2006. Integrality gaps for sparsest cut and minimum linear arrangement problems. In STOC'06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing. ACM, New York, 537--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Diaconis, P., and Saloff-Coste, L. 1993. Comparison theorems for reversible markov chains. Ann. Appl. Prob. 3, 696--730.Google ScholarGoogle ScholarCross RefCross Ref
  18. Enflo, P. 1969. On the nonexistence of uniform homeomorphisms between Lp-spaces. Ark. Mat. 8, 103--105.Google ScholarGoogle ScholarCross RefCross Ref
  19. Feige, U., Hajiaghayi, M., and Lee, J. R. 2005. Improved approximation algorithms for minimum-weight vertex separators. In STOC '05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing. ACM, New York, 563--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Feige, U., and Lee, J. R. 2007. An improved approximation ratio for the minimum linear arrangement problem. Inform. Process. Lett. 101, 1, 26--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Goemans, M. X. 1998. Semidefinite programming and combinatorial optimization. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998). Doc. Math., 657--666 (electronic).Google ScholarGoogle Scholar
  22. Goemans, M. X., and Williamson, D. P. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 6, 1115--1145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Grötschel, M., Lovász, L., and Schrijver, A. 1993. Geometric algorithms and combinatorial optimization, Second ed. Algorithms and Combinatorics, vol. 2. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  24. Jerrum, M., and Sinclair, A. 1989. Approximating the permanent. SIAM J. Comput. 18, 6, 1149--1178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Karakostas, G. 2005. A better approximation ratio for the vertex cover problem. In Automata, languages and programming. Lecture Notes in Computer Science vol. 3580. Springer-Verlag, Berlin, Germany, 1043--1050. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Karger, D., Motwani, R., and Sudan, M. 1998. Approximate graph coloring by semidefinite programming. J. ACM 45, 2, 246--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Karloff, H. J., and Zwick, U. 1997. A 7/8-approximation algorithm for max 3sat? In Proceedings of the 38th IEEE Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, CA, 406--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Khandekar, R., Rao, S., and Vazirani, U. 2006. Graph partitioning using single commodity flows. In STOC '06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing. ACM, New York, 385--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Khot, S., and Vishnoi, N. 2005. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into ℓ1. In FOCS '05: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 53--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Krauthgamer, R., Lee, J. R., Mendel, M., and Naor, A. 2005. Measured descent: a new embedding method for finite metrics. Geom. Funct. Anal. 15, 4, 839--858.Google ScholarGoogle ScholarCross RefCross Ref
  31. Krauthgamer, R., and Rabani, Y. 2006. Improved lower bounds for embeddings into l1. In SODA '06: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm. ACM, New York, 1010--1017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Lang, K., and Rao, S. 2004. A flow-based method for improving the expansion or conductance of graph cuts. In Proceedings of the 10th International IPCO Conference. Lecture Notes in Computer Science, vol. 3064. Springer-Verlag, Berlin, Germany, 325--337.Google ScholarGoogle Scholar
  33. Lee, J. R. 2005. On distance scales, embeddings, and efficient relaxations of the cut cone. In SODA '05: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, USA, 92--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Leighton, T., and Rao, S. 1999. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. JACM 46, 6, 787--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Linial, N., London, E., and Rabinovich, Y. 1995. The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 2, 215--245.Google ScholarGoogle ScholarCross RefCross Ref
  36. Lovász, L., and Schrijver, A. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 2, 166--190.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Matoušek, J. 2002. Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer-Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Naor, A., Rabani, Y., and Sinclair, A. 2005. Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs. J. Funct. Anal. 227, 2, 273--303.Google ScholarGoogle ScholarCross RefCross Ref
  39. Nesterov, Y., and Nemirovskii, A. 1994. Interior-point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia, PA.Google ScholarGoogle Scholar
  40. Schechtman, G. 2003. Concentration, results and applications. In Handbook of the Geometry of Banach Spaces, volume 2, W. Johnson and J. Lindenstrauss, Eds. North Holland, Amsterdam, The Netherlands, (Draft version available from Schechtman's website).Google ScholarGoogle ScholarCross RefCross Ref
  41. Shahrokhi, F., and Matula, D. W. 1990. The maximum concurrent flow problem. J. Assoc. Comput. Mach. 37, 2, 318--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sherali, H., and Adams, W. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 3, 411--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Shmoys, D. S. 1995. Cut problems and their application to divide and conquer. In Approximation Algorithms for NP-Hard Problems, D. Hochbaum, Ed. PWS Publishing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sinclair, A. 1992. Improved bounds for mixing rates of Markov chains and multicommodity flow. Combinat. Probab. Comput. 1, 4, 351--370.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Expander flows, geometric embeddings and graph partitioning

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 56, Issue 2
        April 2009
        190 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/1502793
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 April 2009
        • Accepted: 1 December 2008
        • Revised: 1 July 2008
        • Received: 1 April 2007
        Published in jacm Volume 56, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader