skip to main content
research-article

Curve skeleton extraction from incomplete point cloud

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present an algorithm for curve skeleton extraction from imperfect point clouds where large portions of the data may be missing. Our construction is primarily based on a novel notion of generalized rotational symmetry axis (ROSA) of an oriented point set. Specifically, given a subset S of oriented points, we introduce a variational definition for an oriented point that is most rotationally symmetric with respect to S. Our formulation effectively utilizes normal information to compensate for the missing data and leads to robust curve skeleton computation over regions of a shape that are generally cylindrical. We present an iterative algorithm via planar cuts to compute the ROSA of a point cloud. This is complemented by special handling of non-cylindrical joint regions to obtain a centered, topologically clean, and complete 1D skeleton. We demonstrate that quality curve skeletons can be extracted from a variety of shapes captured by incomplete point clouds. Finally, we show how our algorithm assists in shape completion under these challenges by developing a skeleton-driven point cloud completion scheme.

Skip Supplemental Material Section

Supplemental Material

tps080_09.mp4

mp4

59.8 MB

References

  1. Amenta, N., and Kil, Y. J. 2004. Defining point-set surfaces. ACM Trans. on Graph. 23, 3, 264--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. on Graph. 27, 3, 44:1--44:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blum, H. 1967. A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form. MIT Press, 362--380.Google ScholarGoogle Scholar
  4. Bouix, S., Siddiqi, K., Tannenbaum, A., and Zucker, S. 2006. Medial axis computation and evolution. Statistics and Analysis of Shapes.Google ScholarGoogle Scholar
  5. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proc. of SIGGRAPH, 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chuang, J.-H., Ahuja, N., Lin, C.-C., Tsai, C.-H., and Chen, C.-H. 2004. A potential-based generalized cylinder representation. Computers & Graphics 28, 6, 907--918. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cornea, N. D., Min, P., and Silver, D. 2007. Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. & Comp. Graphics 13, 3, 530--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. de Aguiar, E., Theobalt, C., Thrun, S., and Seidel, H.-P. 2008. Automatic conversion of mesh animations into skeleton-based animations. Computer Graphics Forum (Proc. of Eurographics) 27, 2 (4), 389--397.Google ScholarGoogle Scholar
  9. Dey, T., and Sun, J. 2006. Defining and computing curve-skeletons with medial geodesic function. In Symp. on Geom. Proc., 143--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Giblin, P. J., and Brassett, S. A. 1985. Local symmetry of plane curves. American Mathematical Monthly, 689--707.Google ScholarGoogle Scholar
  11. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. of SIGGRAPH, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proc. of SIGGRAPH, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. James, D., and Twigg, C. 2005. Skinning mesh animations. ACM Trans. on Graph. 24, 3, 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graph. 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3D shape matching. In Symp. on Geom. Proc., 115--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Symp. on Geom. Proc., 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, Y. J., Varadhan, G., Lin, M. C., and Manocha, D. 2003. Fast swept volume approximation of complex polyhedral models. In Proc. of Symp. on Solid Modeling and App., 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, I. 2000. Curve reconstruction from unorganized points. Computer Aided Geometric Design 17, 2, 161--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. on Graph. 27, 3, 37:1--37:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. of SIGGRAPH, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Li, X., Woon, T., Tan, T., and Huang, Z. 2001. Decomposing polygon meshes for interactive applications. In Proc. of Symposium on Interactive 3D graphics, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. on Graph. 26(3), 22:1--22:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lu, L., Choi, Y.-K., Wang, W., and Kim, M.-S. 2007. Variational 3D shape segmentation for bounding volume computation. Computer Graphics Forum (Proc. of Eurographics) 26, 3, 329--338.Google ScholarGoogle ScholarCross RefCross Ref
  24. Malandain, G., and Fernández-Vidal, S. 1998. Euclidean skeletons. Image and Vision Computing 16, 5, 317--327.Google ScholarGoogle ScholarCross RefCross Ref
  25. Mitra, N., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. on Graph. 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mitra, N. J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Symp. on Geom. Proc., 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. ACM Trans. on Graph. 24, 3, 536--543. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ogniewicz, R., Ilg, M., and Zurich, E. 1992. Voronoi skeletons: theory and applications. In Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 63--69.Google ScholarGoogle Scholar
  29. Ovsjanikov, M., Sun, J., and Guibas, L. 2008. Global intrinsic symmetries of shapes. In Computer Graphics Forum (Proc. of Symp. on Geom. Proc.), vol. 27, 1341--1348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Patane, G., Spagnuolo, M., and Falcidieno, B. 2008. Reeb graph computation based on a minimal contouring. In Proc. IEEE Conf. on Shape Modeling and App., 73--82.Google ScholarGoogle Scholar
  31. Pekelny, Y., and Gotsman, C. 2008. Articulated object reconstruction and motion capture from depth video. Computer Graphics Forum (Proc. of Eurographics) 27, 2, 399--408.Google ScholarGoogle ScholarCross RefCross Ref
  32. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. on Graph. 25, 3, 549--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Raab, R., Gotsman, C., and Sheffer, A. 2004. Virtual woodwork: Making toys from geometric models. Int. J. of Shape Modeling 10, 1, 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  34. Sharf, A., Lewiner, T., Shamir, A., and Kobbelt, L. 2007. On-the-fly curve-skeleton computation for 3D shapes. Computer Graphics Forum (Proc. of Eurographics) 26, 3, 323--328.Google ScholarGoogle ScholarCross RefCross Ref
  35. Sharf, A., Lewiner, T., Shklarski, G., Toledo, S., and Cohen-Or, D. 2007. Interactive topology-aware surface reconstruction. ACM Trans. on Graph. 26, 3, 43:1--43:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-time surface reconstruction using incompressible flow. ACM Trans. on Graph. 27, 5, 110:1--110:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Siddiqi, K., and Pizer, S. 2009. Medial Representations: Mathematics, Algorithms and Applications. Springer. Google ScholarGoogle Scholar
  38. Simari, P. D., and Singh, K. 2005. Extraction and remeshing of ellipsoidal representations from mesh data. In Proc. of Graphics Interface, 161--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. IEEE Conf. on Shape Modeling and App., 191--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. In Proc. of Int. Conf. on Comp. Vis., vol. 2, 1824--1831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Symp. on Geom. Proc., 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Curve skeleton extraction from incomplete point cloud

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 28, Issue 3
                August 2009
                750 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1531326
                Issue’s Table of Contents

                Copyright © 2009 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 27 July 2009
                Published in tog Volume 28, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader