skip to main content
10.1145/1543834.1543991acmconferencesArticle/Chapter ViewAbstractPublication PagesgecConference Proceedingsconference-collections
poster

Estimation of distribution algorithm based on archimedean copulas

Authors Info & Claims
Published:12 June 2009Publication History

ABSTRACT

Both Estimation of Distribution Algorithms (EDAs) and Copula Theory are hot topics in different research domains. The key of EDAs is modeling and sampling the probability distribution function which need much time in the available algorithms. Moreover, the modeled probability distribution function can not reflect the correct relationship between variables of the optimization target. Copula Theory provides a correlation between univariable marginal distribution functions and the joint probability distribution function. Therefore, Copula Theory could be used in EDAs. Because Archimedean copulas possess many nice properties, an EDA based on Archimedean copulas is presented in this paper. The experimental results show the effectiveness of the proposed algorithm.

References

  1. Larranaga, P., and Lozano, J. A. 2002. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Boston: Kluwer Academic Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baluja, S. 1994. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. Technical Report CMU-CS-94--163, Pittsburgh, PA: Carnegie Mellon University. URL= http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8084. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sebag, M., and Ducoulombier, A. 1998. Extending population-based incremental learning to continuous search spaces. In Proceedings of the 5th Conference on Parallel Problem Solving from Narute-PPSN V (Amsterdam, Netherlands, September 27--30, 1998 ). Volume 1498 of Lecture Notes in Computer Science. Springer, Berlin, 418--427. URL= http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1884. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Muhlenbein, H., and Paass, G. 1996. From recombination of genes to the estimation of distributions I. Binary Parameters. In Proceedings of the 4th Conference on Parallel Problem Solving from Nature-PPSN IV (Berlin, Germany, September 22 -- 26, 1996). Volume 1141 of Lecture Notes in Computer Science. Springer, Berlin, 178--187. URL= http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.7030&rep=rep1&type=ps. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Larranaga, P., Etxeberria, R., Lozano, J. A., and Pena, J. M. 2000. Optimization in continuous domains by learning and simulation of Gaussian networks. In Proceedings of the Genetic and Evolutionary Computation Conference (Las Vegas, Nevada, USA, July 8--12, 2000). GECCO '00 .Morgan Kaufmann, San Francisco, 201--204.Google ScholarGoogle Scholar
  6. De Bonet, J. S., Isbell, C. L. , and Viola, P. 1996. MIMIC: Finding optima by estimation probability densities. Advances in Neural Information Processing Systems , Cambridge: MIT Press, 9:424--430. URL= http://books.nips.cc/papers/files/nips09/0424.pdfGoogle ScholarGoogle Scholar
  7. Zhong, W., Liu, J., Liu, F., and Jiao, L. 2004. Second order estimation of distribution algorithms based on kalman filter, Chinese J. Comput., September 2004, 27(9):1272--1277 (in Chinese)Google ScholarGoogle Scholar
  8. Pelikan, M., Goldberg, D. E., and Cantu--Paz, E. 1999. BOA: the Bayesian optimization algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference (Orlando, Florida, USA, July 13--17, 1999,). GECCO 1999, .Morgan Kaufmann, San Francisco, 525--532. URL= http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.2148&rep=rep1&type=pdfGoogle ScholarGoogle Scholar
  9. Larranga, P., Etxeberria, R., Lozano, J. A., and Pena, J. M. 1999. Optimization by Learning and Simulation of Bayesian and Gaussian Networks. Technical Report EHU-KZAA-IK-4/99, University of the Basque Country, Spain. URL= http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1895Google ScholarGoogle Scholar
  10. Bosman P.A.N. and Thierens D. 2006. Multi-objective optimization with the naive MIDEA. In Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms, J.A. Lozano, P. Larrañaga, I. Inza and E. Bengoetxea, Ed. Springer-Verlag, Berlin, 123--157.URL= http://www.springerlink.com/content/j9n0ul146357r552/Google ScholarGoogle Scholar
  11. Nazan, K., Goldberg, D. E., and Pelikan, M. 2002. Multi-objective Bayesian optimization algorithm. IlliGAL Report No.2002009, University of Illinois at Urbana-Champaign, Urbana, Illinois,Google ScholarGoogle Scholar
  12. Pelikan, M., Sastry, K., and Goldberg, D. E. 2005. Multiobjective hBOA, clustering, and scalability. In Proceedings of the Genetic and Evolutionary Computation Conference (Washington DC, USA, June 25--26, 2005) GECCO'05. ACM Press, New York, 663--670. URL= http://portal.acm.org/citation.cfm?id=1068122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Salhi, A., Rodriguez, J. A. V., and Zhang, Q. 2007. An Estimation of Distribution Algorithm with Guided Mutation for a Complex Flow Shop Scheduling Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (London, England, UK, July 7--11, 2007). ACM Press, New York, 570 -- 576. URL= http://portal.acm.org/citation.cfm?id=1276958.1277076 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Simionescu, P. A., Beale, D. G., and Dozier, G. V. 2006. Teeth-number synthesis of a multispeed planetary transmission using an estimation of distribution algorithm. J. Mech. Design., January 2006, 128(1):108--115.Google ScholarGoogle ScholarCross RefCross Ref
  15. Santarelli, S., Yu, T., Goldberg, D. E., Altshuler, E., O'Donnell, T., and Southall H. 2006. Military antenna design using simple and competent genetic algorithms. Math. Comput. Model., 43(9--10):990--1022 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Nelsen, R. B. 2006. An Introduction to Copulas (Second Edition). Springer, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Demarta, S., and McNeil, A. J. 2007. The t Copula and Related Copulas, Int. Stat. Rev.,73(1):111--129.Google ScholarGoogle ScholarCross RefCross Ref
  18. De Giuli, M. E., Fantazzini, D., and Maggi, M. A. 2008. A New Approach for Firm Value and Default Probability Estimation beyond Merton Models, Comput. Econ., March 2008, 31(2):161--180 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Cherubini, U., Luciano, E., and Vecchiato, W. 2004. Copula methods in finance. John Wiley.Google ScholarGoogle Scholar
  20. Wang, L. F., Zeng, J. C., and Hong, Y. Estimation of Distribution Based on Copula Theory. In the 2009 IEEE Congress on Evolutionary Computation (Trondheim, Norway, May 18--21, 2009). Paper 622. In press. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Estimation of distribution algorithm based on archimedean copulas

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader