skip to main content
10.1145/1553374.1553376acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities

Published:14 June 2009Publication History

ABSTRACT

The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finitedimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.

References

  1. Adams, R. P., Murray, I., & MacKay, D. J. C. (2009). The Gaussian process density sampler. Advances in Neural Information Processing Systems 21 (pp. 9--16).Google ScholarGoogle Scholar
  2. Cox, D. R. (1955). Some statistical methods connected with series of events. Journal of the Royal Statistical Society, Series B, 17, 129--164.Google ScholarGoogle Scholar
  3. Cunningham, J., Shenoy, K., & Sahani, M. (2008a). Fast Gaussian process methods for point process intensity estimation. International Conference on Machine Learning 25 (pp. 192--199). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cunningham, J., Yu, B., Shenoy, K., & Sahani, M. (2008b). Inferring neural firing rates from spike trains using Gaussian processes. Advances in Neural Information Processing Systems 20 (pp. 329--336).Google ScholarGoogle Scholar
  5. Diggle, P. (1985). A kernel method for smoothing point process data. Applied Statistics, 34, 138--147.Google ScholarGoogle ScholarCross RefCross Ref
  6. Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195, 216--222.Google ScholarGoogle ScholarCross RefCross Ref
  7. Gregory, P. C., & Loredo, T. J. (1992). A new method for the detection of a periodic signal of unknown shape and period. The Astrophysical Journal, 398, 146--168.Google ScholarGoogle ScholarCross RefCross Ref
  8. Heikkinen, J., & Arjas, E. (1999). Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach. Biometrics, 55, 738--745.Google ScholarGoogle ScholarCross RefCross Ref
  9. Jarrett, R. G. (1979). A note on the intervals between coal-mining disasters. Biometrika, 66, 191--193.Google ScholarGoogle ScholarCross RefCross Ref
  10. Kottas, A., & Sansóó, B. (2007). Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. Journal of Statistical Planning and Inference, 137, 3151--3163.Google ScholarGoogle ScholarCross RefCross Ref
  11. Lewis, P. A. W., & Shedler, G. S. (1979). Simulation of a nonhomogeneous Poisson process by thinning. Naval Research Logistics Quarterly, 26, 403--413.Google ScholarGoogle ScholarCross RefCross Ref
  12. Møller, J., Syversveen, A. R., & Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scandinavian Journal of Statistics, 25, 451--482.Google ScholarGoogle ScholarCross RefCross Ref
  13. Murray, I., Ghahramani, Z., & MacKay, D. (2006). MCMC for doubly-intractable distributions. Uncertainty in Artificial Intelligence 22 (pp. 359--366).Google ScholarGoogle Scholar
  14. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge, MA: MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Rathbun, S. L., & Cressie, N. (1994). Asymptotic properties of estimators for the parameters of spatial inhomogeneous Poisson point processes. Advances in Applied Probability, 26, 122--154.Google ScholarGoogle ScholarCross RefCross Ref
  16. Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society, Series B, 39, 172--212.Google ScholarGoogle Scholar

Index Terms

  1. Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities

                      Recommendations

                      Comments

                      Login options

                      Check if you have access through your login credentials or your institution to get full access on this article.

                      Sign in
                      • Published in

                        cover image ACM Other conferences
                        ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
                        June 2009
                        1331 pages
                        ISBN:9781605585161
                        DOI:10.1145/1553374

                        Copyright © 2009 Copyright 2009 by the author(s)/owner(s).

                        Publisher

                        Association for Computing Machinery

                        New York, NY, United States

                        Publication History

                        • Published: 14 June 2009

                        Permissions

                        Request permissions about this article.

                        Request Permissions

                        Check for updates

                        Qualifiers

                        • research-article

                        Acceptance Rates

                        Overall Acceptance Rate140of548submissions,26%

                      PDF Format

                      View or Download as a PDF file.

                      PDF

                      eReader

                      View online with eReader.

                      eReader