skip to main content
10.1145/1553374.1553523acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Learning structural SVMs with latent variables

Published:14 June 2009Publication History

ABSTRACT

We present a large-margin formulation and algorithm for structured output prediction that allows the use of latent variables. Our proposal covers a large range of application problems, with an optimization problem that can be solved efficiently using Concave-Convex Programming. The generality and performance of the approach is demonstrated through three applications including motiffinding, noun-phrase coreference resolution, and optimizing precision at k in information retrieval.

References

  1. Bailey, T., & Elkan, C. (1995). Unsupervised Learning of Multiple Motifs in Biopolymers Using Expectation Maximization. Machine Learning, 21, 51--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Cao, Z., Qin, T., Liu, T., Tsai, M., & Li, H. (2007). Learning to rank: from pairwise approach to listwise approach. Proc. of the Int. Conf. on Mach. Learn. (pp. 129--136). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chapelle, O., Do, C., Le, Q., Smola, A., & Teo, C. (2008). Tighter bounds for structured estimation. Adv. in Neural Inf. Process. Syst. (pp. 281--288).Google ScholarGoogle Scholar
  4. Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Trading convexity for scalability. Proc. of the Int. Conf. on Mach. Learn. (pp. 201--208). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A Discriminatively Trained, Multiscale, Deformable Part Model. Proc. Computer Vision and Pattern Recognition Conf. (pp. 1--8).Google ScholarGoogle ScholarCross RefCross Ref
  6. Finley, T., & Joachims, T. (2005). Supervised clustering with support vector machines. Proc. of the Int. Conf. on Mach. Learn. (p. 217). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In Advances in large margin classifiers, chapter 7, 115--132. MIT Press.Google ScholarGoogle Scholar
  8. Joachims, T. (2002). Optimizing search engines using clickthrough data. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (pp. 133--142). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Joachims, T., Finley, T., & Yu, C. (To appear). Cutting-plane training of structural SVMs. Machine Learning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kiwiel, K. (1990). Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Programming, 46, 105--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Liu, T., Xu, J., Qin, T., Xiong, W., & Li, H. (2007). LETOR: Benchmark dataset for research on learning to rank for information retrieval. SIGIR Workshop on Learning to Rank for Information Retrieval.Google ScholarGoogle ScholarCross RefCross Ref
  12. Ng, P., & Keich, U. (2008). GIMSAN: a Gibbs motif finder with significance analysis. Bioinformatics, 24, 2256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ng, V., & Cardie, C. (2002). Improving machine learning approaches to coreference resolution. Proc. of Assoc. for Computational Linguistics (p. 104). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Petrov, S., & Klein, D. (2007). Discriminative Log-Linear Grammars with Latent Variables. Adv. in Neural Inf. Process. Syst. (p. 1153).Google ScholarGoogle Scholar
  15. Smola, A., Vishwanathan, S., & Hofmann, T. (2005). Kernel methods for missing variables. Proc. of the Int. Conf. on Artif. Intell. and Stat. (p. 325).Google ScholarGoogle Scholar
  16. Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks. Adv. in Neural Inf. Process. Syst. (p. 51).Google ScholarGoogle Scholar
  17. Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for interdependent and structured output spaces. Proc. of the Int. Conf. on Mach. Learn. (p. 104). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Vilain, M., Burger, J., Aberdeen, J., Connolly, D., & Hirschman, L. (1995). A model-theoretic coreference scoring scheme. Proceedings of the 6th conference on Message understanding (pp. 45--52). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Wang, S., Quattoni, A., Morency, L., Demirdjian, D., & Darrell, T. (2006). Hidden Conditional Random Fields for Gesture Recognition. Proc. Computer Vision and Pattern Recognition Conf. (p. 1521). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Wang, Y., & Mori, G. (2008). Max-margin hidden conditional random fields for human action recognition (Technical Report TR 2008--21). School of Computing Science, Simon Fraser University.Google ScholarGoogle Scholar
  21. Yuille, A., & Rangarajan, A. (2003). The Concave-Convex Procedure. Neural Computation, 15, 915. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Zien, A., Brefeld, U., & Scheffer, T. (2007). Trans-ductive support vector machines for structured variables. Proc. of the Int. Conf. on Mach. Learn. (pp. 1183--1190). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning structural SVMs with latent variables

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Other conferences
                  ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
                  June 2009
                  1331 pages
                  ISBN:9781605585161
                  DOI:10.1145/1553374

                  Copyright © 2009 Copyright 2009 by the author(s)/owner(s).

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 14 June 2009

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  Overall Acceptance Rate140of548submissions,26%

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader