skip to main content
10.1145/1661412.1618491acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Fast motion deblurring

Published:01 December 2009Publication History

ABSTRACT

This paper presents a fast deblurring method that produces a deblurring result from a single image of moderate size in a few seconds. We accelerate both latent image estimation and kernel estimation in an iterative deblurring process by introducing a novel prediction step and working with image derivatives rather than pixel values. In the prediction step, we use simple image processing techniques to predict strong edges from an estimated latent image, which will be solely used for kernel estimation. With this approach, a computationally efficient Gaussian prior becomes sufficient for deconvolution to estimate the latent image, as small deconvolution artifacts can be suppressed in the prediction. For kernel estimation, we formulate the optimization function using image derivatives, and accelerate the numerical process by reducing the number of Fourier transforms needed for a conjugate gradient method. We also show that the formulation results in a smaller condition number of the numerical system than the use of pixel values, which gives faster convergence. Experimental results demonstrate that our method runs an order of magnitude faster than previous work, while the deblurring quality is comparable. GPU implementation facilitates further speed-up, making our method fast enough for practical use.

References

  1. Ben-Ezra, M., and Nayar, S. K. 2004. Motion-based motion deblurring. IEEE Trans. Pattern Analysis Machine Intelligence 26, 6, 689--698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chan, T. F., and Wong, C.-K. 1998. Total variation blind deconvolution. IEEE Trans. Image Processing 7, 3, 370--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, W.-G., Nandhakumar, N., and Martin, W. N. 1996. Image motion estimation from motion smear - a new computational model. IEEE Trans. Pattern Analysis Machine Intelligence 18, 4, 412--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cho, S., Matsushita, Y., and Lee, S. 2007. Removing non-uniform motion blur from images. In Proc. ICCV 2007, 1--8.Google ScholarGoogle Scholar
  5. Dai, S., and Wu, Y. 2008. Motion from blur. In Proc. CVPR 2008, 1--8.Google ScholarGoogle Scholar
  6. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., and Freeman, W. 2006. Removing camera shake from a single photograph. ACM Trans. Graphics 25, 3, 787--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hou, Q., Zhou, K., and Guo, B. 2008. BSGP: bulksynchronous GPU programming. ACM Trans. Graphics 27, 3, article no. 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ji, H., and Liu, C. 2008. Motion blur identification from image gradients. In Proc. CVPR 2008, 1--8.Google ScholarGoogle Scholar
  9. Jia, J. 2007. Single image motion deblurring using transparency. In Proc. CVPR 2007, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  10. Joshi, N., Szeliski, R., and Kreigman, D. 2008. PSF estimation using sharp edge prediction. In Proc. CVPR 2008, 1--8.Google ScholarGoogle Scholar
  11. Joshi, N. 2008. Enhancing photographs using content-specific image priors. PhD thesis, UCSD. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graphics 26, 3, article no. 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Levin, A., Sand, P., Cho, T. S., Durand, F., and Freeman, W. T. 2008. Motion-invariant photography. ACM Trans. Graphics 27, 3, article no. 71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Levin, A., Weiss, Y., Durand, F., and Freeman, W. 2009. Understanding and evaluating blind deconvolution algorithms. In Proc. CVPR 2009, 1--8.Google ScholarGoogle Scholar
  15. Lucy, L. 1974. An iterative technique for the rectification of observed distributions. Astronomical Journal 79, 6, 745--754.Google ScholarGoogle ScholarCross RefCross Ref
  16. Money, J. H., and Kang, S. H. 2008. Total variation minimizing blind deconvolution with shock filter reference. Image and Vision Computing 26, 2, 302--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Osher, S., and Rudin, L. I. 1990. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis 27, 4, 919--940. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rav-Acha, A., and Peleg, S. 2005. Two motion-blurred images are better than one. Pattern Recognition Letters 26, 311--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Shan, Q., Jia, J., and Agarwala, A. 2008. High-quality motion deblurring from a single image. ACM Trans. Graphics 27, 3, article no. 73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Tai, Y.-W., Du, H., Brown, M. S., and Lin, S. 2008. Image/video deblurring using a hybrid camera. In Proc. CVPR 2008, 1--8.Google ScholarGoogle Scholar
  21. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proc. ICCV 1998, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Wiener, N. 1964. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yitzhaky, Y., Mor, I., Lantzman, A., and Kopeika, N. S. 1998. Direct method for restoration of motion-blurred images. Journal of Opt. Soc. Am. A. 15, 6, 1512--1519.Google ScholarGoogle ScholarCross RefCross Ref
  24. Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. 2007. Image deblurring with blurred/noisy image pairs. ACM Trans. Graphics 26, 3, article no. 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. 2008. Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Trans. Graphics 27, 3, article no. 74. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast motion deblurring

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers
        December 2009
        669 pages
        ISBN:9781605588582
        DOI:10.1145/1661412

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 December 2009

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGGRAPH Asia '09 Paper Acceptance Rate70of275submissions,25%Overall Acceptance Rate178of869submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader