skip to main content
10.1145/1806689.1806725acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses

Published:05 June 2010Publication History

ABSTRACT

Consider the following two-player communication process to decide a language L: The first player holds the entire input x but is polynomially bounded; the second player is computationally unbounded but does not know any part of x; their goal is to cooperatively decide whether x belongs to L at small cost, where the cost measure is the number of bits of communication from the first player to the second player. For any integer d ≥ 3 and positive real ε we show that if satisfiability for n-variable d-CNF formulas has a protocol of cost O(nd-ε) then coNP is in NP/poly, which implies that the polynomial-time hierarchy collapses to its third level. The result even holds when the first player is conondeterministic, and is tight as there exists a trivial protocol for ε = 0. Under the hypothesis that coNP is not in NP/poly, our result implies tight lower bounds for parameters of interest in several areas, namely sparsification, kernelization in parameterized complexity, lossy compression, and probabilistically checkable proofs. By reduction, similar results hold for other NP-complete problems. For the vertex cover problem on n-vertex d-uniform hypergraphs, the above statement holds for any integer d ≥ 2. The case d=2 implies that no NP-hard vertex deletion problem based on a graph property that is inherited by subgraphs can have kernels consisting of O(k2-ε) edges unless coNP is in NP/poly, where k denotes the size of the deletion set. Kernels consisting of O(k^2) edges are known for several problems in the class, including vertex cover, feedback vertex set, and bounded-degree deletion.

References

  1. D. Achlioptas and C. Moore. Random k-SAT: two moments suffice to cross a sharp threshold. SICOMP, 36(3):740--762, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Achlioptas and Y. Peres. The threshold for random k-SAT is 2k log 2-O(k). Journal of the AMS, 17(4):947--973, 2004.Google ScholarGoogle Scholar
  3. N. Alon. Testing subgraphs in large graphs. RSA, 21(3--4):359--370, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Combinatorica, 20(4):451--476, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  5. N. Alon, T. Kaufman, M. Krivelevich, and D. Ron. Testing triangle-freeness in general graphs. SIAM Journal on Discrete Mathematics, 22(2):786--819, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. Alon and A. Shapira. Testing subgraphs in directed graphs. JCSS, 69(3):354--382, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Alon and A. Shapira. Linear equations, arithmetic progressions and hypergraph property testing. Theory of Computing, 1(1):177--216, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  8. N. Alon and A. Shapira. A characterization of easily testable induced subgraphs. Combinatorics, Probability and Computing, 15(6):791--805, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels. JCSS, 75(8):423--434, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. L. Bodlaender, S. Thomasse, and A. Yeo. Kernel bounds for disjoint cycles and disjoint paths. In ESA, pages 635--646, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. F. Buss and J. Goldsmith. Nondeterminism within P. SICOMP, 22(3):560--572, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Calabro, R. Impagliazzo, and R. Paturi. A duality between clause width and clause density for SAT. In CCC, pages 252--260, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In STOC, pages 94--99, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. Chen, J. Flum, and M. Muller. Lower bounds for kernelizations. ECCC, 14(137), 2007.Google ScholarGoogle Scholar
  15. S. A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151--158, 1971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251--280, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. ECCC, 17(38), 2010.Google ScholarGoogle Scholar
  18. I. Dinur. The PCP theorem by gap amplification. JACM, 54(3):12, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and IDs. In ICALP, pages 378--389, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Erdos and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 35:85--90, 1960.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A generalization of Nemhauser and Trotter's local optimization theorem. In STACS, pages 409--420, 2009.Google ScholarGoogle Scholar
  22. H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves. In STACS, pages 421--432, 2009.Google ScholarGoogle Scholar
  23. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. In STOC, pages 133--142, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. E. Friedgut and J. Bourgain. Sharp thresholds of graph properties, and the k-SAT problem. Journal of the AMS, 12(4):1017--1054, 1999.Google ScholarGoogle Scholar
  26. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. JACM, 45(4):653--750, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News, 38(1):31--45, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications. In FOCS, pages 719--728, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Haastad and A. Wigderson. Simple analysis of graph tests for linearity and PCP. RSA, 22(2):139--160, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? JCSS, 63(4):512--530, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. M. Karp. Reducibility among combinatorial problems. Complexity of computer computations, 43:85--103, 1972.Google ScholarGoogle Scholar
  32. S. Kratsch and M. Wahlstrom. Preprocessing of min ones problems: A dichotomy. Arxiv Preprint, 2009.Google ScholarGoogle Scholar
  33. S. Kratsch and M. Wahlstrom. Two edge modification problems without polynomial kernels. In IWPEC, pages 264--275, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. S. Krishnamoorthy and N. Deo. Node-deletion NP-complete problems. SICOMP, 8(4):619--625, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  35. L. A. Levin. Universal search problems. Problemy Peredachi Informatsii, 9(3):265--266, 1973.Google ScholarGoogle Scholar
  36. J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-complete. JCSS, 20(2):219--230, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  37. I. Z. Ruzsa and E. Szemeredi. Triple systems with no six points carrying three triangles. In Combinatorics, Vol. II, volume 18 of Colloquia Mathematica Societatis Janos Bolyai, pages 939--945. North-Holland, 1978.Google ScholarGoogle Scholar
  38. R. Salem and D. C. Spencer. On sets of integers which contain no three terms in arithmetical progression. Proceedings of the National Academy of Sciences, USA, 28(12):561--563, 1942.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Thomasse. A quadratic kernel for feedback vertex set. In SODA, pages 115--119, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. C.-K. Yap. Some consequences of non-uniform conditions on uniform classes. TCS, 26(3):287--300, 1983.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader