skip to main content
research-article

Slices: a shape-proxy based on planar sections

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

Minimalist object representations or shape-proxies that spark and inspire human perception of shape remain an incompletely understood, yet powerful aspect of visual communication. We explore the use of planar sections, i.e., the contours of intersection of planes with a 3D object, for creating shape abstractions, motivated by their popularity in art and engineering. We first perform a user study to show that humans do define consistent and similar planar section proxies for common objects. Interestingly, we observe a strong correlation between user-defined planes and geometric features of objects. Further we show that the problem of finding the minimum set of planes that capture a set of 3D geometric shape features is both NP-hard and not always the proxy a user would pick. Guided by the principles inferred from our user study, we present an algorithm that progressively selects planes to maximize feature coverage, which in turn influence the selection of subsequent planes. The algorithmic framework easily incorporates various shape features, while their relative importance values are computed and validated from the user study data. We use our algorithm to compute planar slices for various objects, validate their utility towards object abstraction using a second user study, and conclude showing the potential applications of the extracted planar slice shape proxies.

References

  1. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segment. In ACM SIGGRAPH, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Cignoni, P., Montani, C., and Scopigno, R. 1997. A comparison of mesh simplification algorithms. Computers and Graphics 22, 37--54.Google ScholarGoogle ScholarCross RefCross Ref
  3. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approx. In In Proc. SIGGRAPH, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H. S., Finkelstein, A., Funkhouser, T., and Rusinkiewicz, S. 2008. Where do people draw lines? ACM SIGGRAPH 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., and Singh, M. 2009. How well do line drawings depict shape? SIGGRAPH 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. de Goes, F., Goldenstein, S., Desbrun, M., and Velho, L. 2011. Exoskeleton: Curve network abstraction for 3d shapes. Computer and Graphics 35, 1, 112--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Décoret, X., Durand, F., Sillion, F. X., and Dorsey, J. 2003. Billboard clouds for extreme model simplification. In In Proc. SIGGRAPH, 689--696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ecker, A., Kutulakos, K., and Jepson, A. 2007. Shape from planar curves: A linear escape from flatland. In Computer Vision and Pattern Recognition, 1--8.Google ScholarGoogle Scholar
  9. Edwards, B. 2002. The New Drawing on the Right Side of the Brain. Tarcher.Google ScholarGoogle Scholar
  10. Feldman, J., and Singh, M. 2005. Information along contours and object boundaries. In Psych. Review, vol. 112, 243--252.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iwires: an analyze-and-edit approach to shape manipulation. ACM SIGGRAPH 29, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kalogerakis, E., Simari, P., Nowrouzezahrai, D., and Singh, K. 2007. Robust statistical estimation of curvature on discretized surfaces. In EUROGRAPHICS, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3d mesh segmentation and labeling. In ACM SIGGRAPH, 102:1--102:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kavan, L., Dobbyn, S., Collins, S., Žára, J., and O'Sullivan, C. 2008. Polypostors: 2d polygonal impostors for 3d crowds. In In Proc. I3D, 149--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and Pottmann, H. 2008. Curved folding. ACM SIGGRAPH 27, 3, #75, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Koenderink, J. J. 1990. Solid shape. MIT Press, Cambridge, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li, G., Liu, L., Zheng, H., and Mitra, N. J. 2010. Analysis, Reconstruction and Manipulation using Arterial Snakes 29, 6, 152:1--152:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Li, X., Shen, C., Huang, S., Ju, T., and Hu, S. 2010. Popup: Automatic paper architectures from 3d models. ACM SIGGRAPH 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, L., Bajaj, C., Deasy, J., Low, D. A., and Ju, T. 2008. Surface reconstruction from non-parallel curve networks. CGF EUROGRAPHICS 27, 2, 155--163.Google ScholarGoogle ScholarCross RefCross Ref
  20. Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., and Mitra, N. J. 2009. Abstraction of man-made shapes. ACM SIGGRAPH Asia 28, 5, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mitra, N. J., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM SIGGRAPH 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2004. Ridge-valley lines on meshes via implicit surface fitting. In In Proc. SIGGRAPH, 609--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Powell, M. 1978. A Fast Algorithm for Nonlinearly Constrained Optimization Calculations, vol. 630. Springer Verlag.Google ScholarGoogle Scholar
  24. Schmidt, R., Khan, A., Singh, K., and Kurtenbach, G. 2009. Analytic drawing of 3d scaffolds. In ACM SIGGRAPH Asia, 149:1--149:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Simari, P., Kalogerakis, E., and Singh, K. 2006. Folding meshes: hierarchical mesh segmentation based on planar symmetry. In Symp. on Geo. Proc., 111--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Singh, K., and Fiume, E. 1998. Wires: a geometric deformation technique. In In Proc. SIGGRAPH, 405--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Stevens, K. 1981. The visual interpretation of surface contours. In AI, vol. 17, 47--73.Google ScholarGoogle Scholar
  28. Strothotte, T., and Schlechtweg, S. 2002. Non-photorealistic computer graphics: modeling, rendering, and animation. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sweet, G., and Ware, C. 2004. View direction, surface orientation and texture orientation for perception of surface shape. In Graphics Interface, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Todd, J., and Reichel, F. 1990. Visual perception of smoothly curved surfaces from double-projected contour patterns. In J. of Exp. Psych.: Human Percep.and Performance, vol. 16, 665--674.Google ScholarGoogle ScholarCross RefCross Ref
  31. Willis, K. D., Lin, J., Mitani, J., and Igarashi, T. 2010. Spatial sketch: bridging between movement and fabrication. In In Proc. Tangible, embedded, and embodied interaction, 5--12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Slices: a shape-proxy based on planar sections

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 30, Issue 6
        December 2011
        678 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2070781
        Issue’s Table of Contents

        Copyright © 2011 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 December 2011
        Published in tog Volume 30, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader