skip to main content
research-article

The controller placement problem

Published:24 September 2012Publication History
Skip Abstract Section

Abstract

Network architectures such as Software-Defined Networks (SDNs) move the control logic off packet processing devices and onto external controllers. These network architectures with decoupled control planes open many unanswered questions regarding reliability, scalability, and performance when compared to more traditional purely distributed systems. This paper opens the investigation by focusing on two specific questions: given a topology, how many controllers are needed, and where should they go? To answer these questions, we examine fundamental limits to control plane propagation latency on an upcoming Internet2 production deployment, then expand our scope to over 100 publicly available WAN topologies. As expected, the answers depend on the topology. More surprisingly, one controller location is often sufficient to meet existing reaction-time requirements (though certainly not fault tolerance requirements).

References

  1. Ansi t1.tr.68-2001 enhanced network survivability performance.Google ScholarGoogle Scholar
  2. BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP). http://tools.ietf.org/html/rfc4456.Google ScholarGoogle Scholar
  3. Control And Provisioning of Wireless Access Points (CAPWAP) Protocol Specification. http://tools.ietf.org/html/rfc5415.Google ScholarGoogle Scholar
  4. Internet2 open science, scholarship and services exchange. http://www.internet2.edu/network/ose/.Google ScholarGoogle Scholar
  5. Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE. http://tools.ietf.org/html/rfc5862.Google ScholarGoogle Scholar
  6. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on Computing, 33(3):544--562, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe. Design and implementation of a routing control platform. In NSDI. USENIX, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. Ethane: Taking control of the enterprise. ACM SIGCOMM CCR, 37(4):1--12, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Greenberg, G. Hjalmtysson, and et al. A clean slate 4D approach to network control and management. ACM SIGCOMM CCR, 35(5):54, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. Griffin and G. Huston. BGP Wedgies. RFC 4264 (Informational), Nov. 2005.Google ScholarGoogle Scholar
  11. T. G. Griffin and G. Wilfong. An analysis of bgp convergence properties. SIGCOMM CCR., 29:277--288, August 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, and N. McKeown. Nox: Towards an operating system for networks. In ACM SIGCOMM CCR, July 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Handigol, S. Seetharaman, M. Flajslik, R. Johari, and N. McKeown. Aster*x: Load-balancing as a network primitive. 9th GENI Engineering Conference (Plenary), November 2010.Google ScholarGoogle Scholar
  14. D. Hochba. Approximation algorithms for np-hard problems. ACM SIGACT News, 28(2):40--52, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet topology zoo.Google ScholarGoogle Scholar
  16. T. Koponen, M. Casado, and et al. Onix: A distributed control platform for large-scale production networks. In OSDI. USENIX, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route flap damping exacerbates internet routing convergence. SIGCOMM CCR, 32:221--233, August 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. The openflow switch. http://www.openflowswitch.org.Google ScholarGoogle Scholar
  19. R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. Parulkar. Can the Production Network Be the Testbed? In OSDI. USENIX, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Shindler. Approximation algorithms for the metric k-median problem. Written Qualifying Exam Paper, University of California, Los Angeles. Cited on, page 44.Google ScholarGoogle Scholar
  21. V. Vazirani. Approximation algorithms. Springer Verlag, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Yan, D. Maltz, T. Ng, H. Gogineni, H. Zhang, and Z. Cai. Tesseract: A 4d network control plane. In NSDI. USENIX, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The controller placement problem

                    Recommendations

                    Comments

                    Login options

                    Check if you have access through your login credentials or your institution to get full access on this article.

                    Sign in

                    Full Access

                    PDF Format

                    View or Download as a PDF file.

                    PDF

                    eReader

                    View online with eReader.

                    eReader