skip to main content
research-article

Synthesis and optimization of reversible circuits—a survey

Published:12 March 2013Publication History
Skip Abstract Section

Abstract

Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, postsynthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms—search based, cycle based, transformation based, and BDD based—as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.

References

  1. Aaronson, S. and Gottesman, D. 2004. Improved simulation of stabilizer circuits. Phys. Rev. A 70.Google ScholarGoogle ScholarCross RefCross Ref
  2. Altepeter, J., Jeffrey, E., and Kwiat, P. 2005. Photonic state tomography. Adv. At. Mol. Opt. Phys. 52. 105--159.Google ScholarGoogle Scholar
  3. Arabzadeh, M. and Saeedi, M. 2011. RCviewer+, A viewer/analyzer for reversible and quantum circuits, version 1.88. http://ceit.aut.ac.ir/QDA/RCV.htm.Google ScholarGoogle Scholar
  4. Arabzadeh, M., Saeedi, M., and Saheb Zamani, M. 2010. Rule-Based optimization of reversible circuits. In Proceedings of the Asia and South Pacific Design Automation Conference. 849--854. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Asano, M. and Ishii, C. 2005. New structural quantum circuit simulating a toffoli gate. arXiv:quant-ph/0512016.Google ScholarGoogle Scholar
  6. Bacon, D. and Van Dam, W. 2010. Recent progress in quantum algorithms. Comm. ACM 53, 84--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Barenco, A., Bennett, C., Cleve, R., Divincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., and Weinfurter, H. 1995. Elementary gates for quantum computation. Phys. Rev. A 52, 3457--3467.Google ScholarGoogle ScholarCross RefCross Ref
  8. Beckman, D., Chari, A. N., Devabhaktuni, S., and Preskill, J. 1996. Efficient networks for quantum factoring. Phys. Rev. A 54, 2, 1034--1063.Google ScholarGoogle ScholarCross RefCross Ref
  9. Bennett, C. H. 1973. Logical reversibility of computation. IBM J. Res. Dev. 17, 6, 525--532. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bergholm, V., Vartiainen, J. J., Möttönen, M., and Salomaa, M. M. 2005. Quantum circuits with uniformly controlled one-qubit gates. Phys. Rev. A 71.Google ScholarGoogle ScholarCross RefCross Ref
  11. Bollig, B., Löbbing, M., Sauerhoff, M., and Wegener, I. 1999. On the complexity of the hidden weighted bit function for various bdd models. Informatique Theorique et Appl. 33, 2, 103--116.Google ScholarGoogle ScholarCross RefCross Ref
  12. Bryant, R. 1986. Graph-Based algorithms for boolean function manipulation. IEEE Trans. Comput. 35, 8, 677--691. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bushnell, M. and Agrawal, V. 2000. Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits. Kluwer.Google ScholarGoogle Scholar
  14. Cheung, D. 2004. Improved bounds for the approximate qft. In Proceedings of the International Symposium on Information and Communication Technologies. 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cheung, D., Maslov, D., Mathew, J., and Pradhan, D. K. 2009. On the design and optimization of a quantum polynomial-time attack on elliptic curve cryptography. Quant. Inf. Comput. 9, 7&8, 610--621. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cheung, D., Maslov, D., and Severini., S. 2007. Translation techniques between quantum circuit architectures. In Proceedings of the Workshop on Quantum Information.Google ScholarGoogle Scholar
  17. Childs, A. M. and Van Dam, W. 2010. Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1, 1--52.Google ScholarGoogle ScholarCross RefCross Ref
  18. Choi, B. and Van Meter, R. 2008. Effects of interaction distance on quantum addition circuits. quant-ph/0809.4317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Cuccaro, S. A., Draper, T. G., Kutin, S. A., and Moulton, D. P. 2005. A new quantum ripple-carry addition circuit. In Proceedings of the Workshop on Quantum Information.Google ScholarGoogle Scholar
  20. Dally, W. and Towles, B. 2003. Principles and Practices of Interconnection Networks. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. De Vos, A. 2010a. Reversible computer hardware. Electron. Notes Theor. Comput. Sci. 253, 6, 17--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. De Vos, A. 2010b. Reversible Computing. Wiley-VCH.Google ScholarGoogle Scholar
  23. De Vos, A., Raa, B., and Storme, L. 2002. Generating the group of reversible logic gates. J. Phys. A 35, 33, 7063.Google ScholarGoogle Scholar
  24. Desoete, B. and De Vos, A. 2002. A reversible carry-look-ahead adder using control gates. Integr. VLSI J. 33, 1, 89--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Dimitrov, V. S., Jarvinen, K. U., and Adikari, J. 2011. Area-Efficient multipliers based on multiple-radix representations. IEEE Trans. Comput. 60, 2, 189--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Donald, J. and Jha, N. K. 2008. Reversible logic synthesis with fredkin and peres gates. J. Emerg. Technol. Comput. Syst. 4, 1, 2:1--2:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Doucçot, B., Ioffe, L. B., and Vidal, J. 2004. Discrete non-abelian gauge theories in josephson-junction arrays and quantum computation. Phys. Rev. B 69, 21.Google ScholarGoogle Scholar
  28. Egner, S., Püschel, M., and Beth, T. 1997. Decomposing a permutation into a conjugated tensor product. In Proceedings of the International Symposium on Symbolic and Algebraic Computation. 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Fazel, K., Thornton, M., and Rice, J. 2007. ESOP-Based toffoli gate cascade generation. In Proceedings of the IEEE Pacific Rim Conference on Communications. 206--209.Google ScholarGoogle Scholar
  30. Fei, X., Jiang-Feng, D., Ming-Jun, S., Xian-Yi, Z., Rong-Dian, H., and Ji-Hui, W. 2002. Realization of the fredkin gate by three transition pulses in a nuclear magnetic resonance quantum information processor. Chinese Phys. Lett. 19, 8, 1048.Google ScholarGoogle ScholarCross RefCross Ref
  31. Feynman, R. 1986. Quantum mechanical computers. Found. Phys. 16, 6, 507--531.Google ScholarGoogle ScholarCross RefCross Ref
  32. Fowler, A. G., Devitt, S. J., and Hollenberg, L. C. L. 2004a. Implementation of shor's algorithm on a linear nearest neighbour qubit array. Quant. Inf. Comput. 4, 237--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Fowler, A. G., Hill, C. D., and Hollenberg, L. C. L. 2004b. Quantum error correction on linear nearest neighbor qubit arrays. Phys. Rev. A 69, 4.Google ScholarGoogle ScholarCross RefCross Ref
  34. Fredkin, E. F. and Toffoli, T. 1982. Conservative logic. Int. J. Theor. Phys. 21, 3/4, 219--253.Google ScholarGoogle ScholarCross RefCross Ref
  35. Gao, W.-B., Xu, P., Yao, X.-C., Gühne, O., Cabello, A., Lu, C.-Y., Peng, C.-Z., Chen, Z.-B., and Pan, J.-W. 2010. Experimental realization of a controlled-not gate with four-photon six-qubit cluster states. Phys. Rev. Lett. 104, 2.Google ScholarGoogle ScholarCross RefCross Ref
  36. Glück, R. and Kawabe, M. 2005. A method for automatic program inversion based on ir(0) parsing. Fundam. Inf. 66, 4, 367--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Golubitsky, O., Falconer, S. M., and Maslov, D. 2010. Synthesis of the optimal 4-bit reversible circuits. In Proceedings of the Design Automation Conference. 653--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Golubitsky, O. and Maslov, D. 2011. A study of optimal 4-bit reversible toffoli circuits and their synthesis. arXiv:1103.2686. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Grassl, M. 2003. Circuits for quantum error-correcting codes. http://iaks-www.ira.uka.de/home/grassl/QECC/index.html.Google ScholarGoogle Scholar
  40. Grosse, D., Wille, R., Dueck, G., and Drechsler, R. 2009. Exact multiple-control toffoli network synthesis with SAT techniques. IEEE Trans. Comput. Aid. Des. 28, 5, 703--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Gupta, P., Agrawal, A., and Jha, N. 2006. An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput Aid. Des. 25, 11, 2317--2330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Hachtel, G. D. and Somenzi, F. 2000. Logic Synthesis and Verification Algorithms. Kluwer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Häffner, H., Hänsel, W., Roos, C. F., Benhelm, J., Al Kar, D. C., Chwalla, M., Körber, T., Rapol, U. D., Riebe, M., Schmidt, P. O., Becher, C., Gühne, O., Dür, W., and Blatt, R. 2005. Scalable multiparticle entanglement of trapped ions. Nature 438, 643--646.Google ScholarGoogle ScholarCross RefCross Ref
  44. Hilewitz, Y. and Lee, R. B. 2008. Fast bit gather, bit scatter and bit permutation instructions for commodity microprocessors. J. Signal Process. Syst. 53, 145--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Hirata, Y., Nakanishi, M., Yamashita, S., and Nakashima, Y. 2011. An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quant. Inf. Comput. 11, 1--2, 142--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Hung, W., Song, X., Yang, G., Yang, J., and Perkowski, M. 2006. Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aid. Des. 25, 9, 1652--1663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Iwama, K., Kambayashi, Y., and Yamashita, S. 2002. Transformation rules for designing cnot-based quantum circuits. In Proceedings of the Design Automation Conference. 419--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jerrum, M., Sinclair, A., and Vigoda, E. 2004. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51, 4, 671--697. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Kane, B. 1998. A silicon-based nuclear spin quantum computer. Nature 393, 133--137.Google ScholarGoogle ScholarCross RefCross Ref
  50. Kerntopf, P. 2004. A new heuristic algorithm for reversible logic synthesis. In Proceedings of the Design Automation Conference. 834--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Kim, S., Ziesler, C. H., and Papaefthymiou, M. C. 2005. Charge-Recovery computing on silicon. IEEE Trans. Comput. 54, 6, 651--659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Korf, R. 1999. Artificial intelligence search algorithms. In Algorithms Theory Computation Handbook., CRC Press.Google ScholarGoogle Scholar
  53. Kutin, S., Moulton, D., and Smithline, L. 2007. Computation at a distance. Chicago J. Theor. Comput. Sci.Google ScholarGoogle Scholar
  54. Kutin, S. A. 2007. Shor's algorithm on a nearest-neighbor machine. In Proceedings of the Asian Conference on Quantu Information Science.Google ScholarGoogle Scholar
  55. Laforest, M., Simon, D., Boileau, J.-C., Baugh, J., Ditty, M., and Laflamme, R. 2007. Using error correction to determine the noise model. Phys. Rev. A 75, 1, 133--137.Google ScholarGoogle ScholarCross RefCross Ref
  56. Lagarias, J. C. and Odlyzko, A. M. 1987. Computing {pi}(x): An analytic method. J. Algor. 8, 2, 173--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Landauer, R. 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Lee, S., Lee, S., Kim, T., Lee, J. S., Biamonte, J., and Perkowski, M. 2006. The cost of quantum gate primitives. J. Multiple-Valued Logic Soft Comput. 12, 5--6.Google ScholarGoogle Scholar
  59. Markov, I. L. and Roy, J. A. 2003. On sub-optimallity and scalability of logic synthesis tools. In Proceedings of the International Workshop on Logic Synthesis.Google ScholarGoogle Scholar
  60. Markov, I. L. and Saeedi, M. 2012. Constant-optimized quantum circuits for modular multiplication and exponentiation. Quantum Info. Comput. 12, 5--6, 361--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Markov, I. L. and Saeedi, M. 2013. Faster quantum number factoring via circuit synthesis. Phys. Rev. A 87, 012310.Google ScholarGoogle ScholarCross RefCross Ref
  62. Maslov, D. 2007. Linear depth stabilizer and quantum fourier transformation circuits with no auxiliary qubits in finite neighbor quantum architectures. Phys. Rev. A 76.Google ScholarGoogle ScholarCross RefCross Ref
  63. Maslov, D. 2011. Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/~dmaslov/.Google ScholarGoogle Scholar
  64. Maslov, D. and Dueck, G. 2003. Improved quantum cost for n-bit toffoli gates. Electron. Lett. 39, 25, 1790--1791.Google ScholarGoogle ScholarCross RefCross Ref
  65. Maslov, D. and Dueck, G. 2004. Reversible cascades with minimal garbage. IEEE Trans. Comput. Aid. Des. 23, 11, 1497--1509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Maslov, D., Dueck, G., and Miller, D. 2005a. Synthesis of fredkin-toffoli reversible networks. IEEE Trans. VLSI Syst. 13, 6, 765--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Maslov, D., Dueck, G., and Miller, D. 2005b. Toffoli network synthesis with templates. IEEE Trans. Comput. Aid. Des. 24, 6, 807--817. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Maslov, D., Dueck, G., Miller, D., and Negrevergne, C. 2008a. Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aid. Des. 27, 3, 436--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Maslov, D., Dueck, G. W., AND Miller, D. M. 2007. Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12, 4, 42:1--42:28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Maslov, D., Falconer, S. M., and Mosca, M. 2008b. Quantum circuit placement. IEEE Trans. Comput. Aid. Des. 27, 4, 752--763. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Maslov, D. and Saeedi, M. 2011. Reversible circuit optimization via leaving the Boolean domain. IEEE Trans. Comput. Aid. Des. 30, 6, 806--816. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. McGregor, J. P. and Lee, R. B. 2003. Architectural techniques for accelerating subword permutations with repetitions. IEEE Trans. VLSI 11, 325--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Miller, D. and Sasanian, Z. 2010. Improving the NCV realization of multiple-control Toffoli gates. In Proceedings of the International Workshop on Boolean Problems. 37--44.Google ScholarGoogle Scholar
  74. Miller, D. M., Maslov, D., and Dueck, G. W. 2003. A transformation based algorithm for reversible logic synthesis. In Proceedings of the Design Automation Conference. 318--323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Miller, D. M., Wille, R., and Drechsler, R. 2010. Reducing reversible circuit cost by adding lines. In Proceedings of the International Symposium on Multiple-Valued Logic. 217--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Mishchenko, A. and Perkowski, M. 2002. Logic synthesis of reversible wave cascades. In Proceedings of the International Workshop on Logic Synthesis. 197--202.Google ScholarGoogle Scholar
  77. Moore, C. and Crutchfield, J. P. 2000. Quantum automata and quantum grammars. Theor. Comput. Sci. 237, 1--2, 275--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Morita, K. 2008. Reversible computing and cellular automata - A survey. Theor. Comput. Sci. 395, 1, 101--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Möttönen, M. and Vartiainen, J. J. 2006. Decompositions of general quantum gates. In Trends in Quantum Computing Research. NOVA Publishers, Chapter 7.Google ScholarGoogle Scholar
  80. Negrevergne, C., Mahesh, T. S., Ryan, C. A., Ditty, M., Cyr-Racine, F., Power, W., Boulant, N., Havel, T., Cory, D. G., and Laflamme, R. 2006. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 17.Google ScholarGoogle ScholarCross RefCross Ref
  81. Nielsen, M. and Chuang, I. 2000. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Patel, K. N., Markov, I. L., and Hayes, J. P. 2008. Optimal synthesis of linear reversible circuits. Quant. Inf. Comput. 8, 3--4, 282--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Peres, A. 1985. Reversible logic and quantum computers. Phys. Rev. A 32, 3266--3276.Google ScholarGoogle ScholarCross RefCross Ref
  84. Pérez-Delgado, C. A., Mosca, M., Cappellaro, P., and Cory, D. G. 2006. Single spin measurement using cellular automata techniques. Phys. Rev. Lett. 97, 10, 100501.Google ScholarGoogle ScholarCross RefCross Ref
  85. Polian, I., Fiehn, T., Becker, B., and Hayes, J. P. 2005. A family of logical fault models for reversible circuits. In Proceedings of the Asian Test Symposium. 422--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Politi, A., Matthews, J. C. F., and O'Brien, J. L. 2009. Shor's quantum factoring algorithm on a photonic chip. Sci. 325, 5945, 1221.Google ScholarGoogle Scholar
  87. Prasad, A. K., Shende, V. V., Markov, I. L., Hayes, J. P., and Patel, K. N. 2006. Data structures and algorithms for simplifying reversible circuits. J. Emerg. Technol. Comput. Syst. 2, 4, 277--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Rentergem, Y. V., Vos, A. D., and Keyser, K. D. 2007. Six synthesis methods for reversible logic. Open Syst. Inf. Dynam. 14, 1, 91--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Saeedi, M., Arabzadeh, M., Saheb Zamani, M., and Sedighi, M. 2011a. Block-based quantum-logic synthesis. Quant. Inf. Comput. 11, 3--4, 0262--0277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Saeedi, M., Saheb Zamani, M., and Sedighi, M. 2007a. Reversible circuit synthesis using a cycle-based approach. In Proceedings of the International Symposium on VLSI. 428--436.Google ScholarGoogle Scholar
  91. Saeedi, M., Saheb Zamani, M., Sedighi, M., and Sasanian, Z. 2010a. Synthesis of reversible circuit using cycle-based approach. J. Emerg. Technol. Comput. Syst. 6, 4, 13:1--13:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Saeedi, M., Sedighi, M., and Saheb Zamani, M. 2007b. A novel synthesis algorithm for reversible circuits. In Proceedings of the International Conference on Computer-Aided Design. 65--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Saeedi, M., Sedighi, M., and Saheb Zamani, M. 2010b. A library-based synthesis methodology for reversible logic. Microelectron. J. 41, 4, 185--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Saeedi, M., Wille, R., and Drechsler, R. 2011b. Synthesis of quantum circuits for linear nearest neighbor architectures. Quant. Inf. Proc. 10, 3, 355--377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Shende, V., Bullock, S., and Markov, I. L. 2006. Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aid. Des. 25, 6, 1000--1010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Shende, V. V. and Markov, I. L. 2009. On the CNOT-cost of TOFFOLI gates. Quant. Inf. Comput. 9, 5--6, 461--486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Shende, V. V., Markov, I. L., and Bullock, S. S. 2004. Minimal universal two-qubit quantum circuits. Phys. Rev. A 69, 062321.Google ScholarGoogle ScholarCross RefCross Ref
  98. Shende, V. V., Prasad, A. K., Markov, I. L., and Hayes, J. P. 2003. Synthesis of reversible logic circuits. IEEE Trans. Comput. Aid. Des. 22, 6, 710--722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Shi, Y.-Y., Duan, L.-M., and Vidal, G. 2006. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74, 2.Google ScholarGoogle ScholarCross RefCross Ref
  100. Shi, Z. and Lee, R. B. 2000. Bit permutation instructions for accelerating software cryptography. In Proceedings of the International Conference on Application-Specific Systems, Architectures, and Processors. 138--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Skinner, A. J., Davenport, M. E., and Kane, B. E. 2003. Hydrogenic spin quantum computing in silicon: A digital approach. Phys. Rev. Lett. 90, 8, 087901.Google ScholarGoogle ScholarCross RefCross Ref
  102. Skoneczny, M., Van Rentergem, Y., and De Vos, A. 2008. Reversible fourier transform chip. Mixed Des. Integr. Circ. Syst., 281--286.Google ScholarGoogle Scholar
  103. Soeken, M., Frehse, S., Wille, R., and Drechsler, R. 2010a. RevKit: A toolkit for reversible circuit design. In Proceedings of the Workshop on Reversible Computation. http://www.revkit.org.Google ScholarGoogle Scholar
  104. Soeken, M., Wille, R., Dueck, G. W., and Drechsler, R. 2010b. Window optimization of reversible and quantum circuits. Des. Diagnost. Elec. Circ. Syst., 341--345.Google ScholarGoogle Scholar
  105. Storme, L., Vos, A. D., and Jacobs, G. 1999. Group theoretical aspects of reversible logic gates. J. Universal Comput. Sci. 5, 5, 307--321.Google ScholarGoogle Scholar
  106. Svore, K. M., Aho, A. V., Cross, A. W., Chuang, I., and Markov, I. L. 2006. A layered software architecture for quantum computing design tools. Comput. 39, 74--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Takahashi, Y. and Kunihiro, N. 2008. A fast quantum circuit for addition with few qubits. Quant. Inf. Comput. 8, 6--7, 636--649. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Takahashi, Y., Kunihiro, N., and Ohta, K. 2007. The quantum Fourier transform on a linear nearest neighbor architecture. Quant. Inf. Comput. 7, 4, 383--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Takahashi, Y., Tani, S., and Kunihiro, N. 2010. Quantum addition circuits and unbounded fan-out. Quant. Inf. Comput. 10, 9--10, 872--890. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Toffoli, T. 1980. Reversible computing. Tech. memo MIT/LCS/TM-151, MIT Lab.Google ScholarGoogle Scholar
  111. Van Meter, R. and Itoh, K. M. 2005. Fast quantum modular exponentiation. Phys. Rev. A 71, 5.Google ScholarGoogle ScholarCross RefCross Ref
  112. Van Meter, R. and Oskin, M. 2006. Architectural implications of quantum computing technologies. J. Emerg. Technol. Comput. Syst. 2, 1, 31--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Viamontes, G., Markov, I. L., and Hayes, J. P. 2009. Quantum Circuit Simulation. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Viamontes, G. F., Markov, I. L., and Hayes, J. P. 2007. Checking equivalence of quantum circuits and states. In Proceedings of the International Conference on Computer-Aided Design. 69--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Visan, A. M., Polyakov, A., Solanki, P. S., Arya, K., Denniston, T., and Cooperman, G. 2009. Temporal debugging using URDB. CoRR abs/0910.5046.Google ScholarGoogle Scholar
  116. Von Neumann, J. 1966. Theory of Self-Reproducing Automata. University of Illinois Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Wille, R. and Drechsler, R. 2009. BDD-Based synthesis of reversible logic for large functions. In Proceedings of the Design Automation Conference. 270--275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Wille, R. and Drechsler, R. 2010. Towards a Design Flow for Reversible Logic. Springer.Google ScholarGoogle Scholar
  119. Wille, R., Grosse, D., Miller, D. M., and Drechsler, R. 2009. Equivalence checking of reversible circuits. In Proceedings of the International Symposium on Multiple-Valued Logic. 324--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Wille, R., Grosse, D., Teuber, L., Dueck, G. W., and Drechsler, R. 2008a. RevLib: An online resource for reversible functions and reversible circuits. In Proceedings of the International Symposium on Multiple-Valued Logic. 220--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Wille, R., Le, H. M., Dueck, G. W., and Grosse, D. 2008b. Quantified synthesis of reversible logic. In Proceedings of the Conference on Design, Automation, and Test in Europe. 1015--1020. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Wille, R., Offermann, S., and Drechsler, R. 2010a. SyReC: A programming language for synthesis of reversible circuits. In Proceedings of the Forum on Specification and Design Languages.Google ScholarGoogle Scholar
  123. Wille, R., Soeken, M., and Drechsler, R. 2010b. Reducing the number of lines in reversible circuits. In Proceedings of the Design Automation Conference. 647--652. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Yamashita, S. and Markov, I. L. 2010. Fast equivalence-checking for quantum circuits. Quant. Inf. Comput. 9, 9--10, 721--734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Yang, G., Song, X., Hung, W. N., Xie, F., and Perkowski, M. A. 2006. Group theory based synthesis of binary reversible circuits. Lecture Notes in Computer Science, vol. 3959, Springer, 365--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Yang, G., Song, X., Hung, W. N. N., and Perkowski, M. A. 2008. Bi-directional synthesis of 4-bit reversible circuits. Comput. J. 51, 207--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Yokoyama, T., Axelsen, H. B., and Glück, R. 2008. Principles of a reversible programming language. Comput. Frontiers, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Zhang, J., Vala, J., Sastry, S., and Whaley, K. B. 2003. Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 4, 042313. AC.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Synthesis and optimization of reversible circuits—a survey

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 45, Issue 2
        February 2013
        417 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/2431211
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 March 2013
        • Accepted: 1 October 2011
        • Revised: 1 August 2011
        • Received: 1 March 2011
        Published in csur Volume 45, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader