skip to main content
research-article

A Fast Extraction Algorithm for Defect-Free Subcrossbar in Nanoelectronic Crossbar

Authors Info & Claims
Published:06 May 2014Publication History
Skip Abstract Section

Abstract

Due to the super scale, high defect density, and per-chip designing paradigm of emerging nanoelectronics, the runtime of the algorithms for defect-tolerant design is of vital importance from the perspective of practicability. In this article, an efficient and effective heuristic defect-free subcrossbar extraction algorithm is proposed which improves performance by mixing the heuristics from two state-of-the-art algorithms and then is speeded up significantly by considerably reducing the number of major loops. Compared with the current most effective algorithm that improves the solution quality (i.e., size of the defect-free subcrossbar obtained) at the cost of high time complexity O(n3), the time complexity of the proposed heuristic algorithm is proved to be O(n2). Using a large set of instances of various scales and defect densities, the simulation results show that the proposed algorithm can offer similar high-quality solutions as the current most effective algorithm while consuming much shorter runtimes (reduced to about 1/3 to 1/5) than the current most effective algorithm.

References

  1. A. Al-Yamani, S. Ramsundar, and D. K. Pradham. 2007. A defect tolerance scheme for nanotechnology circuits. IEEE Trans. Circ. Syst. I. Regular Papers. 54, 11, 2402--2409.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Bourianoff, J. E. Brewer, R. Cavin, J. A. Hutchby, and V. Zhirnov. 2008. Boolean logic and alternative information-processing devices. Computer 41, 5, 38--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Cavin, J. A. Hutchby, V. Zhirnov, J. E. Brewer, and G. Bourianoff. 2008. Emerging research architectures. Computer 41, 5, 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams. 2003a. Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 4, 462--468.Google ScholarGoogle ScholarCross RefCross Ref
  5. Y. Chen, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, and E. Erson. 2003b. Nanoscale molecular-switch devices fabricated by imprint lithography. Appl. Phys. Lett. 82, 1610--1612.Google ScholarGoogle ScholarCross RefCross Ref
  6. Y. Cheng and G. M. Church. 2000. Biclustering of expression data. In Proceedings of the International Conference on Intelligent Systems for Molecular Biology. 93--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Chilstedt, C. Dong, and D. Chen. 2009. Design and evaluation of a carbon nanotube-based programmable architecture. Int. J. Parallel Program. 37, 4, 389--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Crocker, X. S. Hu, and M. Niemier. 2009. Defects and faults in QCA-based PLAs. ACM J. Emerg. Technol. Comput. Syst. 5, 2, Article 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Dai, L. Wang, and F. Jain. 2009. Analysis of defect tolerance in molecular crossbar electronics. IEEE Trans. VLSI Syst. 17, 4, 529--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Dawande, P. Keskinocak, J. M. Swaminathan, and S. Tayur. 2001. On bipartite and multipartite clique problems. J. Algor. 41, 2, 388--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Dehon. 2005. Nanowire-based programmable architectures. ACM J. Emerg. Technol. Comput. Syst. 1, 2, 109--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Dehon and H. Naeimi. 2005. Seven strategies for tolerating highly defective fabrication. IEEE Des. Test Comput. 22, 4, 306--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. F. Gerofolini. 2007a. Realistic limits to computation I. Physical limits. Appl. Phys. A 86, 1, 23--29.Google ScholarGoogle ScholarCross RefCross Ref
  15. G. F. Gerofolini. 2007b. Realistic limits to computation II. The technological side. Appl. Phys. A. Sci. Process. 86, 1, 31--42.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Ghavami, A. Tajary, M. Raji, and H. Pedram. 2010. Defect and variation issues on design mapping of reconfigurable nanoscale crossbars. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI. 173--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. C. Goldstein and M. Budiu. 2001. Nanofabrics: Spatial computing using molecular electronics. In Proceedings of the Annual International Symposium on Computer Architecture. 178--189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Goren, H. F. Ugurdag, and O. Palaz. 2011. Defect-aware nanocrossbar logic mapping through matrix canonization using two-dimensional radix sort. ACM J. Emerg. Technol. Comput. Syst. 7, 3, Article 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Haselman and S. Hauck. 2010. The future of integrated circuits: A survey of nanoelectronics. Proc. IEEE 98, 1, 11--38.Google ScholarGoogle ScholarCross RefCross Ref
  20. T. Hogg and G. Snider. 2006. Defect-tolerant adder circuits with nanoscale crossbars. IEEE Trans. Nanotechnol. 5, 2, 97--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Hogg and G. Snider. 2007. Defect-tolerant logic with nanoscale crossbar circuits. J. Electr. Test. 23, 2--3, 117--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. W. Lu and C. M. Lieber. 2007. Nanoelectronics from the bottom up. Nat. Mater. 6, 841--850.Google ScholarGoogle ScholarCross RefCross Ref
  23. W. Rao, A. Orailoglu, and R. Karri. 2009. Logic mapping in crossbar-based nanoarchitectures. IEEE Des. Test Comput. 26, 1, 68--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. S. Ravi and E. L. Lloyd. 1988. The complexity of near-optimal programmable logic array folding. SIAM J. Comput. 17, 4, 696--710. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber. 2000. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 5476, 94--97.Google ScholarGoogle Scholar
  26. G. Snider, P. Kuekes, T. Hogg, and R. S. Williams. 2005. Nanoelectronic architectures. Appl. Phys. A Mater. Sci. Process. 80, 6, 1183--1195.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. B. Strukov and K. K. Likharev. 2005. CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 6, 888--900.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. B. Tahoori. 2006. Application-independent defect tolerance of reconfigurable nanoarchitectures. ACM J. Emerg. Technol. Comput. Syst. 2, 3, 197--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. B. Tahoori. 2009. Low-overhead defect tolerance in crossbar Nanoarchitectures. ACM J. Emerg. Technol. Comput. Syst. 5, 2, Article 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Tunc and M. B. Tahoori. 2010. Variation tolerant logic mapping for crossbar array nano architectures. In Proceedings of the 15th Asia and South Pacific Design Automation Conference. 855--860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. H. Yan, H. S. Choe, S. W. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M. Lieber. 2011. Programmable nanowire circuits for nanoprocessor. Nature 470, 7333, 240--244.Google ScholarGoogle Scholar
  32. M. Yannakakis. 1981. Node-deletion problems on bipartite graphs. SIAM J. Comput. 10, 2, 310--327.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Yellambalase and M. Choi. 2008. Cost-driven repair optimization of reconfigurable nanowire crossbar systems with clustered defects. J. Syst. Archit. 54, 8, 729--741. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. B. Yuan and B. Li. 2011. A low time complexity defect-tolerance algorithm for nanoelectronic crossbar. In Proceedings of the International Conference on Information Science and Technology. 143--148.Google ScholarGoogle Scholar

Index Terms

  1. A Fast Extraction Algorithm for Defect-Free Subcrossbar in Nanoelectronic Crossbar

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 10, Issue 3
        April 2014
        196 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/2614448
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 May 2014
        • Accepted: 1 August 2013
        • Revised: 1 January 2013
        • Received: 1 September 2012
        Published in jetc Volume 10, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader