skip to main content
10.1145/2517351.2517367acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

Accelerometer-based transportation mode detection on smartphones

Published:11 November 2013Publication History

ABSTRACT

We present novel accelerometer-based techniques for accurate and fine-grained detection of transportation modes on smartphones. The primary contributions of our work are an improved algorithm for estimating the gravity component of accelerometer measurements, a novel set of accelerometer features that are able to capture key characteristics of vehicular movement patterns, and a hierarchical decomposition of the detection task. We evaluate our approach using over 150 hours of transportation data, which has been collected from 4 different countries and 16 individuals. Results of the evaluation demonstrate that our approach is able to improve transportation mode detection by over 20% compared to current accelerometer-based systems, while at the same time improving generalization and robustness of the detection. The main performance improvements are obtained for motorised transportation modalities, which currently represent the main challenge for smartphone-based transportation mode detection.

References

  1. L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data. In Proceedings of the 2nd International Conference on Pervasive Computing (PERVASIVE), volume 3001 of Lecture Notes in Computer Science, pages 1--17. Springer-Verlag, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Bieber, J. Voskamp, and B. Urban. Activity recognition for everyday life on mobile phones. In Proceedings of the 5th International Conference on Universal Access in Human-Computer Interaction (UAHCI), pages 289--296, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Bolbol, T. Cheng, I. Tsapakis, and J. Haworth. Inferring hybrid transportation modes from sparse gps data using a moving window svm classification. Computers, Environment and Urban Systems, 31;6:526--537, 2012.Google ScholarGoogle Scholar
  4. T. Brezmes, J.-L. Gorricho, and J. Cotrina. Activity recognition from accelerometer data on a mobile phone. In Workshop Proceedings of the 10th International Work-Conference on Artificial Neural Networks (IWANN), pages 796--799, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen, J. Froehlich, B. Harrison, P. Klasnja, A. LaMarca, L. LeGrand, R. Libby, I. Smith, and J. A. Landay. Activity sensing in the wild: a field trial of ubifit garden. In CHI '08: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, pages 1797--1806, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Figo, P. Diniz, D. Ferreira, and J. Cardoso. Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14-7:645--662, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In Proceedings of the Second European Conference on Computational Learning Theory, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Y. Freund and R. E. Schapire. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14(5):771--780, 1999.Google ScholarGoogle Scholar
  9. J. Froehlich, T. Dillahunt, P. Klasnja, J. Mankoff, S. Consolvo, B. Harrison, and J. A. Landay. Ubigreen: investigating a mobile tool for tracking and supporting green transportation habits. In Proceedings of the 27th international conference on Human factors in computing systems (CHI), pages 1043--1052. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding individual human mobility patterns. Nature, 453:779--782, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. F. Ichikawa, J. Chipchase, and R. Grignani. Where's the phone? a study of mobile phone location in public spaces. In Proceedings of the 2nd International Conference on Mobile Technology, Applications and Systems, pages 1--8. IEEE, 2005.Google ScholarGoogle Scholar
  12. T. Iso and K. Yamazaki. Gait analyzer based on a cell phone with a single three-axis accelerometer. Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, pages 141--144, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Jylhä, P. Nurmi, M. Siren, S. Hemminki, and G. Jacucci. Matkahupi: a persuasive mobile application for sustainable mobility. In ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava. Sensloc: sensing everyday places and paths using less energy. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys), pages 43--56. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. B. Kjærgaard, S. Bhattacharya, H. Blunck, and P. Nurmi. Energy-efficient trajectory tracking for mobile devices. In Proceedings of the 9th International Conference on Mobile Systems, Applications and Services (MobiSys), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Krumm and E. Horvitz. LOCADIO: Inferring motion and location from Wi-Fi signal strengths. In Proceedings of the 1st International Conference on Mobile and Ubiquitous Systems (Mobiquitous), pages 4--14. IEEE, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  17. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A survey of mobile phone sensing. IEEE Communications Magazine, 48(9):140--150, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Lazer, A. P. L. Adamic, S. Aral, A.-L. Barabási, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. R. 2, and M. V. Alstyne. Computational social science. Science, 323(5915):721--723, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. H. Lu, J. Yang, Z. Liu, N. D. Lane, C. T., and C. A. The jigsaw continuous sensing engine for mobile phone applications. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pages 71--84, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application. In Proceedings of the 6th ACM conference on Embedded network sensor systems (SenSys), pages 337--350, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. M. Mitchell. Mining our reality. Science, 326(1644):1644--1645, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Mizell. Using gravity to estimate accelerometer orientation. In Proc. Seventh IEEE International Symposium on Wearable Computers, pages 252--253, 18--21 Oct. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Mun, D. Estrin, J. Burke, and M. Hansen. Parsimonious mobility classification using gsm and wifi traces. In Proceedings of the 5th International Conference on Embedded Networked Sensor Systems (SenSys), pages 1--5, 2008.Google ScholarGoogle Scholar
  24. K. Muthukrishnan, M. Lijding, N. Meratnia, and P. Havinga. Sensing Motion Using Spectral and Spatial Analysis of WLAN RSSI. In Proceedingds of the 2nd European Conference on Smart Sensing and Context (EuroSSC), pages 62--76,. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Nurmi, S. Bhattacharya, and J. Kukkonen. A grid-based algorithm for on-device GSM positioning. In Proceedings of the 12th International Conference on Ubiquitous Computing (UbiComp), pages 227--236, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks, 6(2):13:1--13:27, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury, I. Smith, S. Consolvo, J. Hightower, W. G. Griswold, and E. de Lara. Mobility detection using everyday GSM traces. In Proceedings of the 8th International Conference on Ubiquitous Computing (Ubicomp), pages 212--224, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Song, Z. Qu, N. Blumm, and A.-L. Barabási. Limits of predictability in human mobility. Science, 19(5968):1018--1021, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. Soper. Is human mobility tracking a good idea? Communications of the ACM, 55; 4:35--37, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. Transportation mode detection using mobile phones and gis information. Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 54--63, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Wang, C. Chen, and J. Ma. Accelerometer based transportation mode recognition on mobile phones. In Asia-Pacific Conference on Wearable Computing Systems, pages 44--46, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Ward, P. Lukowicz, and G. Tröster. Evaluating performance in continuous context recognition using event-driven error characterization. In Proceedings of the 2nd International Workshop on Location- and Context-Awareness (LoCA), pages 239--255. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. A. Ward, P. Lukowicz, and H. W. Gellersen. Performance metrics for activity recognition. ACM Transactions on Intelligent Systems and Technology (TIST), 2(1):6:1--6:23, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Z. Yan, V. Subbaraju, D. Chakrabarti, A. Misra, and A. K. Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. International Symposium on Wearable Computers (ISWC), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Yang. Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In Proceedings of the 1st International Workshop on Interactive Multimedia for Consumer Electronics (IMCE), pages 1--9, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Zheng, Y. Chen, Q. Li, and W.-Y. Xie, X. Ma. Understanding transportation modes based on gps data for web applications. ACM Transactions on the Web, 4,1, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma. Understanding mobility based on gps data. In Proceedings of the 10th international conference on Ubiquitous computing, pages 312--321, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with taxicabs. In Proceedings of the 13th International Conference on Ubiquitous Computing (Ubicomp), pages 89--98. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Accelerometer-based transportation mode detection on smartphones

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SenSys '13: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems
        November 2013
        443 pages
        ISBN:9781450320276
        DOI:10.1145/2517351

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 November 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SenSys '13 Paper Acceptance Rate21of123submissions,17%Overall Acceptance Rate174of867submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader