skip to main content
research-article

Altruism in Atomic Congestion Games

Published:01 December 2013Publication History
Skip Abstract Section

Abstract

This article studies the effects of altruism, a phenomenon widely observed in practice, in the model of atomic congestion games. Altruistic behavior is modeled by a linear trade-off between selfish and social objectives. Our model can be embedded in the framework of congestion games with player-specific latency functions. Stable states are the pure Nash equilibria of these games, and we examine their existence and the convergence of sequential best-response dynamics. In general, pure Nash equilibria are often absent, and existence is NP-hard to decide. Perhaps surprisingly, if all delay functions are affine, the games remain potential games, even when agents are arbitrarily altruistic. The construction underlying this result can be extended to a class of general potential games and social cost functions, and we study a number of prominent examples. These results give important insights into the robustness of multi-agent systems with heterogeneous altruistic incentives. Furthermore, they yield a general technique to prove that stabilization is robust, even with partly altruistic agents, which is of independent interest.

In addition to these results for uncoordinated dynamics, we consider a scenario with a central altruistic institution that can set incentives for the agents. We provide constructive and hardness results for finding the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms to incentivize agents to adopt favorable behavior. These results are closely related to Stackelberg routing and answer open questions raised recently in the literature.

References

  1. Ackermann, H., Röglin, H., and Vöcking, B. 2008. On the impact of combinatorial structure on congestion games. J. ACM 55, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ackermann, H., Röglin, H., and Vöcking, B. 2009. Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410, 17, 1552--1563. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Babaioff, M., Kleinberg, R., and Papadimitriou, C. 2009. Congestion games with malicious players. Games Econom. Behav. 67, 1, 22--35.Google ScholarGoogle ScholarCross RefCross Ref
  4. Berenbrink, P., Goldberg, L. A., Goldberg, P., and Martin, R. 2006. Utilitarian resource assignment. J. Disc. Algorithms 4, 4, 567--587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bruno, J., Coffman Jr., E., and Sethi, R. 1974. Scheduling independent tasks to reduce mean finishing time. Comm. ACM 17, 7, 382--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M., and Papaioannou, E. 2010. The impact of altruism on the efficiency of atomic congestion games. In Proceedings of the 5th Symposium on Trustworthy Global Computing (TGC). 172--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, P.-A. and Kempe, D. 2008. Altruism, selfishness, and spite in traffic routing. In Proceedings of the 9th Conference on Electronic Commerce (EC). 140--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, P.-A., Keijzer, B. D., Kempe, D., and Schaefer, G. 2011. On the robust price of anarchy of altruistic games. In Proceedings of the 7th International Workshop on Internet and Network Economics (WINE). 383--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Christodoulou, G., Koutsoupias, E., and Nanavati, A. 2009. Coordination mechanisms. Theoret. Comput. Sci. 410, 36, 3327--3336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cohen, J., Dürr, C., and Kim, T. N. 2011. Non-clairvoyant scheduling games. Theory Comput. Syst. 49, 1, 3--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cook, W. and Rohe, A. 1999. Computing minimum-weight perfect matchings. INFORMS J. Comput. 11, 2, 138--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eshel, I., Samuelson, L., and Shaked, A. 1998. Altruists, egoists and hooligans in a local interaction model. Amer. Econ. Rev. 88, 1, 157--179.Google ScholarGoogle Scholar
  13. Fabrikant, A., Papadimitriou, C., and Talwar, K. 2004. The complexity of pure Nash equilibria. In Proceedings of the 36th Symposium on Theory of Computing (STOC). 604--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fehr, E. and Schmidt, K. 1999. A theory of fairness, competition, and cooperation. Quart. J. Econ. 114, 817--868.Google ScholarGoogle ScholarCross RefCross Ref
  15. Feldmann, R., Gairing, M., Lücking, T., Monien, B., and Rode, M. 2003. Nashification and the coordination ratio for a selfish routing game. In Proceedings of the 30th International Colloqium on Automata, Languages and Programming (ICALP). 514--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fotakis, D. 2010. Stackelberg strategies for atomic congestion games. Theory Comput. Syst. 47, 1, 218--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fotakis, D., Kontogiannis, S., and Spirakis, P. 2005. Selfish unsplittable flows. Theoret. Comput. Sci. 348, 2--3, 226--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gairing, M. 2008. Malicious Bayesian congestion games. In Proceedings of the 6th International Workshop on Approximation and Online Algorithms (WAOA). 119--132.Google ScholarGoogle Scholar
  19. Gairing, M., Lücking, T., Mavronicolas, M., and Monien, B. 2010. Computing Nash equilibria for scheduling on restricted parallel links. Theory Comput. Syst. 47, 2, 405--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gairing, M., Monien, B., and Tiemann, K. 2011. Routing (un-)splittable flow in games with player-specific linear latency functions. ACM Trans. Algorithms 7, 3, 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gintis, H., Bowles, S., Boyd, R., and Fehr, E. 2005. Moral Sentiments and Material Interests: The Foundations of Cooperation in Economic Life. MIT Press.Google ScholarGoogle Scholar
  22. Hoefer, M. and Skopalik, A. 2009a. Altruism in atomic congestion games. In Proceedings of the 17th European Symposium on Algorithms (ESA). 179--189.Google ScholarGoogle Scholar
  23. Hoefer, M. and Skopalik, A. 2009b. Stability and convergence in selfish scheduling with altruistic agents. In Proceedings of the 5th International Workshop on Internet and Network Economics (WINE). 616--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hoefer, M. and Souza, A. 2010. Tradeoffs and average-case equilibria in selfish routing. ACM Trans. Comp. Theory 2, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hoefer, M. and Suri, S. 2012. Dynamics in network interaction games. Distrib. Comput. 25, 5, 359--370.Google ScholarGoogle ScholarCross RefCross Ref
  26. Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., and Sun, Q. 2005. Fast and compact: A simple class of congestion games. In Proceedings of the 20th Conference on Artificial Intelligence (AAAI). 489--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Immorlica, N., Li, L., Mirrokni, V., and Schulz, A. 2009. Coordination mechanisms for selfish scheduling. Theoret. Comput. Sci. 410, 17, 1589--1598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kaporis, A. and Spirakis, P. 2008. Stackelberg games: The price of optimum. In Encyclopedia of Algorithms. Springer Verlag, Berlin.Google ScholarGoogle Scholar
  29. Kaporis, A. and Spirakis, P. 2009. The price of optimum in Stackelberg games on arbitrary single commodity networks and latency functions. Theoret. Comput. Sci. 410, 8--10, 745--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Karakostas, G. and Viglas, A. 2007. Equilibria for networks with malicious users. Math. Prog. 110, 3, 591--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kleinberg, J. 2007. Cascading behavior in netwoks: Algorithmic and economic issues. In Algorithmic Game Theory. Cambridge University Press, Chapter 24.Google ScholarGoogle Scholar
  32. Korilis, Y., Lazar, A., and Orda, A. 1997. Achieving network optima using Stackelberg routing strategies. IEEE/ACM Trans. Netw. 5, 1, 161--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Koutsoupias, E. and Papadimitriou, C. 2009. Worst-case equilibria. Comput. Sci. Rev. 3, 2, 65--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ledyard, J. 1997. Public goods: A survey of experimental resesarch. In Handbook of Experimental Economics, J. Kagel and A. Roth Eds., Princeton University Press, 111--194.Google ScholarGoogle Scholar
  35. Levine, D. 1998. Modeling altruism and spitefulness in experiments. Rev. Econom. Dynamics 1, 593--622.Google ScholarGoogle ScholarCross RefCross Ref
  36. Milchtaich, I. 1996. Congestion games with player-specific payoff functions. Games Econom. Behav. 13, 1, 111--124.Google ScholarGoogle ScholarCross RefCross Ref
  37. Morris, S. 2000. Contagion. Rev. Econ. Stud. 67, 1, 57--78.Google ScholarGoogle ScholarCross RefCross Ref
  38. Moscibroda, T., Schmid, S., and Wattenhofer, R. 2009. The price of malice: A game-theoretic framework for malicious behavior in distributed systems. Internet Math. 6, 2, 125--155.Google ScholarGoogle ScholarCross RefCross Ref
  39. Nisan, N., Tardos, É., Roughgarden, T., and Vazirani, V., Eds. 2007. Algorithmic Game Theory. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rosenthal, R. 1973. A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Roughgarden, T. 2004. Stackelberg scheduling strategies. SIAM J. Comput. 33, 2, 332--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sharma, Y. and Williamson, D. 2009. Stackelberg thresholds in network routing games or the value of altruism. Games Econom. Behav. 67, 1, 174--190.Google ScholarGoogle ScholarCross RefCross Ref
  43. Tovey, C. 1984. A simplified NP-complete satisfiability problem. Disc. Appl. Math. 8, 85--89.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Altruism in Atomic Congestion Games

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Economics and Computation
        ACM Transactions on Economics and Computation  Volume 1, Issue 4
        December 2013
        96 pages
        ISSN:2167-8375
        EISSN:2167-8383
        DOI:10.1145/2542174
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 December 2013
        • Accepted: 1 October 2012
        • Revised: 1 August 2012
        • Received: 1 April 2012
        Published in teac Volume 1, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader