skip to main content
research-article

Unsolved problems in visibility graphs of points, segments, and polygons

Published:27 December 2013Publication History
Skip Abstract Section

Abstract

In this survey article, we present open problems and conjectures on visibility graphs of points, segments, and polygons along with necessary backgrounds for understanding them.

References

  1. Abel, Z., Ballinger, B., Bose, P., Collette, S., Dujmović, V., Hurtado, F., Kominers, S. D., Langerman, S., Pór, A., and Wood, D. R. 2011. Every large point set contains many collinear points or an empty pentagon. Graphs Comb. 27, 1, 47--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Abello, J. and Egecioglu, O. 1993. Visibility graphs of staircase polygons with uniform step length. Int. J. Comput. Geom. Appl. 3, 27--37.Google ScholarGoogle ScholarCross RefCross Ref
  3. Abello, J., Egecioglu, O., and Kumar, K. 1995. Visibility graphs of staircase polygons and the weak Bruhat order, I: From visibility graphs to maximal chains. Discrete Comput. Geom. 14, 331--358.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Abello, J. and Kumar, K. 1995. Visibility graphs and oriented matroids. In Proceeding of Graph Drawing. Lecture Notes in Computer Science Series, vol. 894. Springer-Verlag, 147--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Abello, J. and Kumar, K. 2002. Visibility graphs and oriented matroids. Discrete Comput. Geom. 28, 449--465.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Abello, J., Lin, H., and Pisupati, S. 1992. On visibility graphs of simple polygons. Congressus Numerantium 90, 119--128.Google ScholarGoogle Scholar
  7. Agarwal, P. K., Alon, N., Aronov, B., and Suri, S. 1994. Can visibility graphs be represented compactly? Discrete Comput. Geom. 12, 347--365.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Aloupis, G., Ballinger, B., Collette, S., Langerman, S., Pór, A., and Wood, D. R. 2010. Blocking coloured point sets. In Proceedings of the 26th European Workshop Computational Geometry. 29--32.Google ScholarGoogle Scholar
  9. Alpert, H., Koch, C., and Laison, J. D. 2010. Obstacle numbers of graphs. Discrete Comput. Geom. 44, 223--244.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Andreae, T. 1992. Some results on visibility graphs. Discrete Appl. Math. 40, 5--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Aronov, B., Ezra, E., and Sharir, M. 2010. Small-size Îμ-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39, 3248--3282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Asano, T., Asano, T., Guibas, L. J., Hershberger, J., and Imai, H. 1986. Visibility of disjoint polygons. Algorithmica 1, 49--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Avis, D. and ElGindy, H. 1983. A combinatorial approach to polygon similarity. IEEE Trans. Inf. Theory IT-2, 148--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Avis, D. and Rappaport, D. 1985. Computing the largest empty convex subset of a set of points. In Proceedings of the 1st ACM Symposium on Computational Geometry. 161--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Bárány, I. and Károlyi, G. 2001. Problems and results around the Erdös-Szekeres convex polygon theorem. In Revised Papers from the Japanese Conference on Discrete and Computational (JCDCG'00). Springer, Berlin, 91--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Bidokhti, N. S. 2012. On full characterizing terrain visibility graphs. Master's thesis, Department of Computing Science, University of British Columbia.Google ScholarGoogle Scholar
  17. Bilò, D., Disser, Y., Mihalák, M., Suri, S., Vicari, E., and Widmayer, P. 2012. Reconstructing visibility graphs with simple robots. Theor. Comput. Sci. 444, 52--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Bjrner, A., Vergnas, M., Sturmfels, B., White, N., and Ziegler, G. 1999. Oriented Matroids. Cambridge University Press.Google ScholarGoogle Scholar
  19. Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. 1989. Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36, 929--965. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Bose, P., Dean, A., Hutchinson, J. P., and Shermer, T. C. 1997. On rectangle visibility graphs. In Proceedings of the 4th International Conference on Graph Drawing. Lecture Notes in Computer Science Series, vol. 1190. Springer-Verlag, 25--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Bose, P., Houle, M. E., and Toussaint, G. T. 2001. Every set of disjoint line segments admits a binary tree. Discrete & Computational Geometry 26, 387--410.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Brass, P., Moser, W. O. J., and Pach, J. 2005. Research Problems in Discrete Geometry. Springer, New York.Google ScholarGoogle Scholar
  23. Brönnimann, H. and Goodrich, M. T. 1995. Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14, 463--479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Chazelle, B., Guibas, L. J., and Lee, D. 1985. The power of geometric duality. BIT 25, 76--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Chen, G., Hutchinson, J., Keating, K., and Shen, J. 2006. Charaterization of [1,k]-bar visibility trees. The Electronic Journal of Combinatorics 13, 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  26. Choi, S.-H., Shin, S. Y., and Chwa, K.-Y. 1995. Characterizing and recognizing the visibility graph of a funnel-shaped polygon. Algorithmica 14, 1, 27--51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Colley, P. 1992. Recognizing visibility graphs of unimonotone polygons. In Proceedings of the 4th Canadian Conference on Computational Geometry. 29--34.Google ScholarGoogle Scholar
  28. Colley, P., Lubiw, A., and Spinrad, J. 1997. Visibility graphs of towers. Comput. Geom. Theory Appl. 7, 161--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Coullard, C. and Lubiw, A. 1992. Distance visibility graphs. Int. J. Comput. Geom. Appl. 2, 349--362.Google ScholarGoogle ScholarCross RefCross Ref
  30. Das, S., Goswami, P., and Nandy, S. 2002. Testing Necessary Conditions for Recognizing Visibility Graphs of Simple Polygons. Manuscript, Indian Statistical Institute, Kolkata.Google ScholarGoogle Scholar
  31. de Berg, M., Cheong, O., Kreveld, M., and Overmars, M. 2008. Computational Geometry, Algorithms and Applications, 3rd Ed. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Dean, A., Evans, W., Gethner, E., Laison, J. D., Safari, M. A., and Trotter, W. T. 2007. Bar k-visibility graphs. J. Graph Algorithms Appl. 11, 45--59.Google ScholarGoogle ScholarCross RefCross Ref
  33. Dean, A., Gethner, E., and Hutchinson, J. 2004. Unit bar-visibility layouts of triangulated polgyons. In Proceedings of the 11th International Conference on Graph Drawing. Lecture Notes in Computer Science Series, vol. 3383. Springer-Verlag, 111--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Dean, A. and Hutchinson, J. P. 1997. Rectangle-visibility representations of bipartite graphs. Discrete Appl. Math. 75, 9--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Dean, A. and Veytsel, N. 2003. Unit bar-visibility graphs. Congressus Numerantium 160, 161--175.Google ScholarGoogle Scholar
  36. Diestel, R. 2010. Graph theory. Springer.Google ScholarGoogle Scholar
  37. Disser, Y. 2011. Mapping Polygons. Ph.D. thesis, ETH, Zurich.Google ScholarGoogle Scholar
  38. Disser, Y., Bilò, D., Mihalák, M., Suri, S., Vicari, E., and Widmayer, P. 2009. On the limitations of combinatorial visibilities. In Proceedings of the 25th European Workshop on Computational Geometry. 207--210.Google ScholarGoogle Scholar
  39. Disser, Y., Mihalák, M., Ghosh, S. K., and Widmayer, P. 2012. Mapping a polygon with holes using compass. In Proceedings of the 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities. Lecture Notes in Computer Science, vol. 7718. Springer, 78--89.Google ScholarGoogle Scholar
  40. Disser, Y., Mihalák, M., and Widmayer, P. 2011. A polygon is determined by its angles. Comput. Geom. Theory Appl. 44, 418--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Dobkin, D. P., Edelsbrunner, H., and Overmars, M. H. 1990. Searching for empty convex polygons. Algorithmica 5, 561--571.Google ScholarGoogle ScholarCross RefCross Ref
  42. Duchet, P., Hamidoune, Y., Vergnas, M. L., and Meyniel, H. 1983. Representing a planar graph by vertical lines joining different levels. Discrete Math. 46, 319--321.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Dumitrescu, A., Pach, J., and Tóth, G. 2009. A note on blocking visibility between points. Geombinatorics 19, 67--73.Google ScholarGoogle Scholar
  44. Edelsbrunner, H., O'Rourke, J., and Seidel, R. 1986. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 341--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Eidenbenz, S. 2000. In-approximability of Visibility Problems on Polygons and Terrains. Ph.D. Thesis, Institute for Theoretical Computer Science, ETH, Zurich.Google ScholarGoogle Scholar
  46. Eidenbenz, S. 2002. In-approximability of finding maximum hidden sets on polygons and terrains. Comput. Geom. Theory Appl. 21, 139--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Eidenbenz, S. and Stamm, C. 2000. Maximum clique and minimum clique partition in visibility graphs. In Proceedings of IFIP International Conference on Theoretical Computer Science (TCS'00). Lecture Notes in Computer Science, vol. 1872. Springer-Verlag, 200--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Eidenbenz, S., Stamm, C., and Widmayer, P. 2001. Inapproximability results for guarding polygons and terrains. Algorithmica 31, 79--113.Google ScholarGoogle ScholarCross RefCross Ref
  49. ElGindy, H. 1985. Hierarchical Decomposition of Polygons with Applications. Ph.D. thesis, McGill University, Montreal. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Eppstein, D. 2000. Spanning trees and spanners. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds., North-Holland, 425--461.Google ScholarGoogle Scholar
  51. Erdös, P. 1978. Some more problems in elementary geometry. Aust. Math. Soc. Gazette 5, 52--54.Google ScholarGoogle Scholar
  52. Erdös, P. 1981. Some applications of graph theory and combinatorial methods to number theory and geometry. In Algebraic methods in graph theory, vols. I, II, Szeged 1978. Colloquia Mathematica Societatis Janos Bolyai. Vol. 25. North-Holland, Amsterdam, 137--148.Google ScholarGoogle Scholar
  53. Erdös, P. and Szekeres, G. 1935. A combinatorial problem in geometry. Compositio Mathmatica 2, 463--470.Google ScholarGoogle Scholar
  54. Erdös, P. and Szekeres, G. 1961. On some extremum problems in elementary geometry. Annales Universitatis Scientarium Budapestinensis de Rolando Etvs Nominatae Sectio Mathematica 3--4, 53--62.Google ScholarGoogle Scholar
  55. Everett, H. 1990. Visibility graph recognition. Ph. D. Thesis, University of Toronto, Toronto. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Everett, H. and Corneil, D. G. 1990. Recognizing visibility graphs of spiral polygons. J. Algorithms 11, 1--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Everett, H. and Corneil, D. G. 1995. Negative results on characterizing visibility graphs. Comput. Geom. Theory Appl. 5, 51--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Everett, H., Hoang, C. T., Kilakos, K., and Noy, M. 2000. Planar segment visibility graphs. Comput. Geom. Theory Appl. 16, 235--243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Everett, H., Hurtado, F., and Noy, M. 1999. Stabbing information of a simple polygon. Discrete Appl. Math. 91, 67--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Everett, H., Lubiw, A., and O'Rourke, J. 1993. Recovery of convex hulls from external visibility graphs. In Proceedings of the 5th Canadian Conference on Computational Geometry. 309--314.Google ScholarGoogle Scholar
  61. Feige, U. 1998. A threshold of ln n for approximating set cover. J. ACM 45, 634--652. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Felsner, S. and Massow, M. 2007. Thickness of bar 1-visibility graphs. In Proceedings of the 14th International Conference on Graph Drawing. Lecture notes in Computer Science Series, vol. 4372. Springer-Verlag, 330--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Freiman, G. A. 1973. Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs, vol. 37, American Mathematical Society, Providence.Google ScholarGoogle Scholar
  64. Fulek, R., Saeedi, N., and Sariöz, D. 2011. Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs. CoRR abs/1104.4656.Google ScholarGoogle Scholar
  65. Gerken, T. 2008. Empty convex hexagons in planar point sets. Discrete Comput. Geom. 39, 239--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Ghosh, S. K. 1987. Approximation algorithms for art gallery problems. In Proceedings of the Canadian Information Processing Society Congress. 429--434.Google ScholarGoogle Scholar
  67. Ghosh, S. K. 1988. On recognizing and characterizing visibility graphs of simple polygons. In Proceedings of the Scandinavian Workshop on Algorithm Theory. Lecture Notes in Computer Science, Springer-Verlag, 96--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Ghosh, S. K. 1997. On recognizing and characterizing visibility graphs of simple polygons. Discrete Comput. Geom. 17, 143--162.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Ghosh, S. K. 2007. Visibility Algorithms in the Plane. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Ghosh, S. K. 2010a. Approximation algorithms for art gallery problems in polygons. Discrete Appl. Math. 158, 718--722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Ghosh, S. K. 2010b. Approximation algorithms for art gallery problems in polygons and terrains. In Proceedings of the 4th International Workshop on Algorithms and Computations. Lecture Notes in Computer Science Series, vol. 5942. Springer-Verlag, 21--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Ghosh, S. K., Maheshwari, A., Pal, S. P., Saluja, S., and Veni Madhavan, C. E. 1993. Characterizing and recognizing weak visibility polygons. Comput. Geom. Theory Appl. 3, 213--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Ghosh, S. K. and Mount, D. M. 1991. An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20, 888--910. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Ghosh, S. K. and Roy, B. 2012a. Some results on point visibility graphs. CoRR abs/1209.2308.Google ScholarGoogle Scholar
  75. Ghosh, S. K. and Roy, B. 2012b. Two necessary conditions for recognizing point visibility graphs. Manuscript, Tata Institute of Fundamental Research. May.Google ScholarGoogle Scholar
  76. Ghosh, S. K., Shermer, T., Bhattacharya, B. K., and Goswami, P. P. 2007. Computing the maximum clique in the visibility graph of a simple polygon. J. Discrete Algorithms 5, 524--532. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Gilbers, A. and Klein, R. 2011. A new upper bound for the VC-dimension of visibility regions. In Proceedings of the 27th Annual ACM Symposium on Computational Geometry. 380--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Goodman, J. E. and Pollack, R. 1984. Semispaces of configurations, cell complexes of arrangements. J. Comb. Theory A 37, 257--293.Google ScholarGoogle ScholarCross RefCross Ref
  79. Goodman, J. E. and Pollack, R. 1986. Upper bounds for configurations and polytopes in Rd. Discrete Comput. Geom. 1, 219--227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Har-Peled, S. 2011. Geometric Approximation Algorithms. American Mathematical Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Harborth, H. 1978. Konvexe fnfecke in ebenen punktmengen. Elemente der Mathematik 33, 116--118.Google ScholarGoogle Scholar
  82. Hartke, S. G., Vandenbussche, J., and Wenger, P. 2007. Further results on bar k-visibility graphs. SIAM J. Discrete Math. 21, 523--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Hernández-Barrera, A., Hurtado, F., Urrutia, J., and Zamora, C. 2001. On the midpoints of a plane point set. Unpublished manuscript.Google ScholarGoogle Scholar
  84. Hershberger, J. 1989. Finding the visibility graph of a polygon in time proportional to its size. Algorithmica 4, 141--155.Google ScholarGoogle ScholarCross RefCross Ref
  85. Hoffmann, M. and Tóth, C. 2003. Alternating paths through disjoint line segments. Inf. Process. Lett. 87, 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Hoffmann, M. and Toth, C. 2003. Segment endpoint visibility graphs are hamiltonian. Comput. Geom. Theory Appl. 26, 47--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Horton, J. 1983. Sets with no empty 7-gons. Can. Math. Bull. 26, 482--484.Google ScholarGoogle ScholarCross RefCross Ref
  88. Jackson, L. and Wismath, S. K. 2002. Orthogonal polygon reconstruction from stabbing information. Comput. Geom. Theory Appl. 23, 69--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Kalai, G. and J. Matoušek, J. 1997. Guarding galleries where every point sees a large area. Israel J. Math. 101, 125--139.Google ScholarGoogle ScholarCross RefCross Ref
  90. Kára, J., Pór, A., and Wood, D. R. 2005. On the chromatic number of the visibility graph of a set of points in the plane. Discrete Comput. Geom. 34, 3, 497--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. King, J. 2008. VC-dimension of visibility on terrains. In Proceedings of the 20th Canadian Conference on Computational Geometry. 27--30.Google ScholarGoogle Scholar
  92. King, J. and Kirkpatrick, D. G. 2011. Improved approximation for guarding simple galleries from the perimeter. Discrete Comput. Geom. 46, 2, 252--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Kirkpatrick, D. and Wismath, S. 1996. Determining bar-representability for ordered weighted graphs. Comput. Geom. Theory Appl. 6, 99--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Knuth, D. E. 1992. Axioms and hulls. Lecture Notes in Computer Science Series, vol. 606. Springer-Verlag.Google ScholarGoogle Scholar
  95. Komlós, J., Pach, J., and Woeginger, G. 1992. Almost tight bounds for ε-nets. Discrete Comput. Geom. 7, 163--173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Koshelev, V. 2007. On the Erdös-Szekeres problem in combinatorial geometry. Electron. Notes Discrete Math. 29, 175--177.Google ScholarGoogle ScholarCross RefCross Ref
  97. Lee, D. T. 1978. Proximity and Reachability in the Plane. Tech. rep. ACT-12 and Ph.D. Thesis, Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, IL. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Lee, D. T. and Lin, A. K. 1986. Computational complexity of art gallery problems. IEEE Trans. Inf. Theory IT--32, 2, 276--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Lin, S. Y. and Chen, C. Y. 1994. Planar visibility graphs. In Proceedings of the 6th Canadian Conference on Computational Geometry. 30--35.Google ScholarGoogle Scholar
  100. Lin, S. Y. and Skiena, S. 1995. Complexity aspects of visibility graphs. Int. J. Comput. Geom. Appl. 5, 289--312.Google ScholarGoogle ScholarCross RefCross Ref
  101. Lozano-Perez, T. and Wesley, M. A. 1979. An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22, 560--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Luccio, F., Mazzone, S., and Wong, C. K. 1987. A note on visibility graphs. Discrete Math. 64, 209--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Matousek, J. 2002. Lecture on Discrete Geometry. Graduate Text in Mathematics Series, vol. 212. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Matousek, J. 2009. Blocking visibility for points in general position. Discrete Comput. Geom. 42, 219--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Mirzaian, A. 1992. Hamiltonian triangulations and circumscribing polygons of disjoint line segments. Comput. Geom. Theory Appl. 2, 15--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Morris, W. and Soltan, V. 2000. The Erdös-Szekeres problem on points in convex position—a survey. Bull. Am. Math. Soc. 37, 437--458.Google ScholarGoogle ScholarCross RefCross Ref
  107. Mukkamala, P., Pach, J., and Sariöz, D. 2010. Graphs with large obstacles numbers. In Proceedings of the 36th International Workshop on Graph Theoretic Concepts in Computer Science. Number 6410 in Lecture Notes in Computer Science. Springer-Verlag, 203--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Mutzel, P., Odenthal, T., and Scharbrodt, M. 1998. The thickness of graphs: A survey. Graphs Comb. 14, 59--73.Google ScholarGoogle ScholarCross RefCross Ref
  109. Mycielski, J. 1955. Sur le coloriage des graphes. Colloquim Math. 3, 161--162.Google ScholarGoogle Scholar
  110. Nicolás, C. M. 2007. The empty hexagon theorem. Discrete Comput. Geom. 38, 389--397. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. O'Rourke, J. 1987. Art Gallery Theorems and Algorithms. Oxford University Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. O'Rourke, J. 1998. Open problems in the combinatorics of visibility and illumination. In Advances in Discrete and Computational Geometry, B. Chazelle, J. E. Goodman, and R. Pollack, Eds. (Contemporary Mathematics) American Mathematical Society, 237--243.Google ScholarGoogle Scholar
  113. O'Rourke, J. and Rippel, J. 1994. Two segment classes with Hamiltonian visibility graphs. Comput. Geom. Theory Appl. 4, 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. O'Rourke, J. and Streinu, I. 1997. Vertex-edge pseudo-visibility graphs: characterization and recognition. In Proceedings of the 13th Annual ACM Symposium on Computational Geometry. 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Overmars, M. H. 2003. Finding sets of points without empty convex 6-gons. Discrete Comput. Geom. 29, 153--158.Google ScholarGoogle ScholarCross RefCross Ref
  116. Pach, J. 2003. Midpoints of segments induced by a point set. Geombinatorics 13, 98--105.Google ScholarGoogle Scholar
  117. Payne, M. S., Pór, A., Valtr, P., and Wood, D. R. 2011. On the connectivity of visibility graphs. ArXive e-prints arXiv:1106.3622.Google ScholarGoogle Scholar
  118. Payne, M. S., Pór, A., Valtr, P., and Wood, D. R. 2012. On the connectivity of visibility graphs. Discrete Comput. Geom. 48, 3, 669--681. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Pfender, F. 2008. Visibility graphs of point sets in the plane. Discrete Comput. Geom. 39, 1, 455--459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Plesník, J. 1975. Critical graphs of given diameter. Acta Fac. Rerum Natur. Univ. Comenian. Math. 30, 71--93.Google ScholarGoogle Scholar
  121. Pocchiola, M. and Vegter, G. 1996. Topologically sweeping visibility complexes via pseudo-triangulations. Discrete Comput. Geom. 16, 419--453.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Pór, A. and Wood, D. R. 2010. On visibility and blockers. J. Comput. Geom. 1, 29--40.Google ScholarGoogle Scholar
  123. Ramsey, F. P. 1930. On a problem of formal logic. In Proceedings of the London Mathematical Society, Series 2 30, 264--286.Google ScholarGoogle Scholar
  124. Rappaport, D. 1989. Computing simple circuits from a set of line segments is NP-complete. SIAM J. Comput. 18, 1128--1139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Rappaport, D., Imai, H., and Toussaint, G. T. 1990. Computing simple circuits from a set of line segments. Discrete Comput. Geom. 5, 289--304.Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Raz, R. and Safra, S. 1997. A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing. 475--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Romanlk, K. 1997. Directed rectangle-visibility graphs have unbounded dimension. Discrete Appl. Math. 73, 35--39.Google ScholarGoogle ScholarCross RefCross Ref
  128. Rosenstiehl, P. and Tarjan, R. E. 1986. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1, 343--353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Roy, B. May 2011. Recognizing point visibility graphs. Graduate School Project Report, Tata Institute of Fundamental Research.Google ScholarGoogle Scholar
  130. Schlag, M., Luccio, F., Maestrini, P., Lee, D. T., and Wong, C. 1985. A visibility problem in VLSI layout compaction. In Advances in Computing Research, F. Preparata, Ed., JAI Press Inc., 259--282.Google ScholarGoogle Scholar
  131. Shapiro, L. G. and Haralick, R. M. 1979. Decomposition of two-dimensional shape by graph-theoretic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1, 10--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Sharir, M. and Schorr, A. 1986. On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Shermer, T. 1989. Hiding people in polygons. Computing 42, 109--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Shermer, T. 1992. Recent results in art galleries. Proc. IEEE 80, 1384--1399.Google ScholarGoogle ScholarCross RefCross Ref
  135. Shermer, T. 1996. On rectangle visibility graphs, III: External visibility and complexity. In Proceedings of the 8th Canadian Conference on Computational Geometry. 234--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Spinrad, J. P. 2003. Efficient Graph Representations. American Mathematical Society.Google ScholarGoogle Scholar
  137. Srinivasaraghavan, G. and Mukhopadhyay, A. 1994. A new necessary condition for the vertex visibility graphs of simple polygons. Discrete Comput. Geom. 12, 65--82.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Stanchescu, Y. V. 2002. Planar sets containing no three collinear points and non-averaging sets of integers. Discrete Math. 256, 387--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Streinu, I. 1999. Non-stretchable pseudo-visibility graphs. In Proceedings of the 11th Canadian Conference on Computational Geometry. 22--25.Google ScholarGoogle Scholar
  140. Streinu, I. 2005. Non-stretchable pseudo-visibility graphs. Comput. Geom. Theory Appl. 31, 195--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. Streinu, I. and Whitesides, S. 2003. Rectangle visibility graphs: characterization, construction, and compaction. In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science. Lecture Notes of Computer Science Series, vol. 2607. Springer-Verlag, 26--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Suri, S., Vicari, E., and Widmayer, P. 2008. Simple robots with minimal sensing: From local visibility to global geometry. Int. J. Robotic Res. 27, 1055--1067. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Tamassia, R. and Tollis, I. 1986. A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1, 321--341.Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Tóth, G. and Valtr, P. 2005. The Erdös-Szekeres theorem: upper bounds and related results. In Combinatorial and Computational Geometry, J. E. Goodman, J. Pach, and E. Welzl, Eds., vol. 52. Cambridge University Press, Cambridge, 557--568.Google ScholarGoogle Scholar
  145. Urabe, M. and Watanabe, M. 1992. On a counterexample to a conjecture of Mirzaian. Comput. Geom. Theory Appl. 2, 51--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Urrutia, J. 2000. Art gallery and illumination problems. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds., North-Holland, 973--1023.Google ScholarGoogle Scholar
  147. Urrutia, J. 2002. Open problems in computational geometry. In Proceedings of the 5th Latin American Symposium on Theoretical Informatics. Lecture Notes in Computer Science Series, vol. 2286. Springer-Verlag, 4--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. Valtr, P. 1998. Guarding galleries where no point sees a small area. Israel J. Math. 104, 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  149. Vapnik, V. N. and Chervonenkis, A. Y. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications 16, 264--280.Google ScholarGoogle ScholarCross RefCross Ref
  150. Warren, H. 1968. Lower bounds for approximation by nonlinear manifolds. Trans. AMS 133, 167--178.Google ScholarGoogle ScholarCross RefCross Ref
  151. Welzl, E. 1985. Constructing the visibility graph for n line segments in O(n2) time. Inf. Process. Lett. 20, 167--171.Google ScholarGoogle ScholarCross RefCross Ref
  152. Wismath, S. K. 1985. Characterizing bar line-of-sight graphs. In Proceedings of the 1st ACM Symposium on Computational Geometry. 147--152. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Unsolved problems in visibility graphs of points, segments, and polygons

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 46, Issue 2
        November 2013
        483 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/2543581
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 December 2013
        • Accepted: 1 April 2013
        • Revised: 1 September 2012
        • Received: 1 February 2012
        Published in csur Volume 46, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader